Preview

Izvestiya. Ferrous Metallurgy

Advanced search
Vol 66, No 2 (2023)
View or download the full issue PDF (Russian)

METALLURGICAL TECHNOLOGIES

140-147 1365
Abstract

The time of information technology determines its priorities, which are a prerequisite for building a competitive production and economy. The ubiquitous spread of digitalization is one of the basic principles of new economy, a new type of socio–economic structure that is gradually being formed in the modern world through the introduction of scientific and technological progress and innovative methods of management, intellectualization and capitalization of human knowledge, the use of advanced new information and material technologies, accelerated development of knowledge-intensive sectors of the economy, the formation of creative, efficient, rational information and material production. Currently, at large foundries with mass and large-scale production of castings, the task of automating the control of technological processes using digital control systems was solved in general. They implement algorithms for controlling technological processes of casting in closed circuits (locally). The systems under consideration allow to implement optimal control strategies and automatically perform sequences of operations (start and stop of equipment; calculation and input of metal charge; calculation of formulations, dosing and mixing of molding and core mixtures) of multi-stage periodic casting processes. Digital transformation can significantly change the established practice of foundry production (from direct control and management of technological processes to business planning and document management). The transformation will have an impact on all parameters of the enterprise: economic efficiency of production (productivity, operating costs); reliability (operational readiness); safety (number of incidents); compliance with legislative norms on ecology. The technological criterion for success of the digital transformation of foundry production will be the release of a nomenclature of castings with a minimum level of defect, commercial – the release of a nomenclature of castings in demand on the market (machine parts and mechanisms), with a minimum self-cost, which is determined by the technological level of preparation of the production and its implementation and, as a consequence, low costs and optimal quality of molds, metal and castings.

148-153 739
Abstract

This paper studies the kinetics of structure formation of an iron-bronze composite containing solid lubricants. Depending on the compacting pressure and sintering temperature, binary and complex phases are detected in the iron-bronze structure. The presence of solid lubricants in the composition of the composite material significantly reduces interaction of the liquid (bronze) and solid (iron) phases during sintering. Talc and graphite, which are heat–resistant at a sintering temperature of 850 – 1150 °C, were used as solid lubricants. The presence of talc, located on the surface of compressed particles of iron, copper, tin and graphite, significantly reduces the effect of their interaction. At the same time, the micro-talc particles envelop them, and its thermal stability retains this state up to high temperatures (approximately 900 °C). It was established that there is no perlite in the microstructure of iron-bronze sintered at a temperature of 850 °C. This can be explained by the talc adsorbing ability on the surface of iron particles which prevents diffusion of carbon into the iron crystal lattice. An increase in the sintering temperature up to 1000 °C leads to the formation of perlite in the iron-bronze structure, while the amount of perlite predominates over ferrite. This indicates the partial burnout of talc from the surface of iron particles and the opening of diffusion paths to carbon. At a sintering temperature of 1150 °C, perlite and a grid of light inclusions are formed in the microstructure of the iron-bronze samples. According to the results of electron microprobe analysis, the light inclusions are solid solutions of variable compositions such as Fe – Cu – Sn, Cu – Fe – Sn, Cu – Sn – Fe. In order to confirm these assumptions, a phase X-ray diffraction analysis was performed. Diffraction patterns of these samples are represented by reflections of iron and copper crystals. The absence of diffraction effects (characteristic of tin crystals) is conditioned by tin solubility in the copper lattice. This is due to the low melting point of tin (232 °C) and its ionic radius, which allows isomorphically replacing of copper and iron ions with tin ions (their difference is less than 15 %).

MATERIAL SCIENCE

154-161 592
Abstract

Evolution of shear deformation in steel with the structure of tempered martensite was studied under active tension. Purpose of the work was to identify the patterns of deformation development at the scale-structural levels: lath, plate, fragment of a package and a lath. The authors investigated the deformation relief formed at different stages of plastic deformation by optical, transmission and scanning electron microscopy. Quantitative characteristics of the deformation relief were measured: shear strength (P), distance (X) between the shear traces and their length. Statistical processing was carried out, the average values and relationship with the degree of plastic deformation were determined. It was established that development of shear deformation in the lath component of martensite occurs with the formation of two subsystems of shear traces: thin and coarse. Subsystems of thin traces are formed from the very beginning of plastic deformation. Appearance and evolution of the subsystem of coarse traces correlates with formation of the first (long) neck in the sample, and it is the main mechanism leading to the localization of plastic deformation on the sample scale. The places of localization of rough shift are the border areas of the laths and fragments of the package. Connection between localization of subsystems of coarse shear traces and formation of a fragmented dislocation structure were revealed. The values of the average shear power in thin <Pf> and coarse <Ps> traces do not depend on the degree of local plastic deformation of the sample in the entire range of deformation degrees and remain constant until destruction (<Pf> = 0.1 μm and <Ps> = 0.3 μm).

162-167 797
Abstract

The paper is devoted to correlation dependences of ultrasound velocity with characteristics of strength and plasticity in uniaxial tension of Fe18Cr10Ni austenitic stainless steel with a unique set of physical and mechanical properties. Such a successful set of mechanical properties is provided by dislocation slip and twinning, the formation of stacking faults, and martensitic transformation. It should be noted that the assessment of changes in the mechanical characteristics of metals (especially at low temperatures) is a very laborious task and requires the use of non-destructive control methods. Experimental data was obtained using a bench designed to synchronize with recording of the “stress – strain” diagram for determining the values of ultrasound velocity propagation and the attenuation coefficient of the ultrasonic wave as a function of deformation. Measurement of ultrasound velocity propagation was reduced to determining the time of passage of an ultrasonic Rayleigh pulse between transmitting and receiving transducers. Attenuation was determined from the change in pulse shape. The pulses were excited by a piezoelectric transducer at a frequency of 5 MHz. The authors experimentally studied static loading effect on acoustic characteristics and calculated the destruction parameters. The propagation ultrasound velocity in deformable material is an informative feature for analyzing the nature of the processes that control plasticity. The effect of test temperature in the range 180 K ≤ T ≤ 320 K on acoustic and mechanical characteristics of the steel was studied to ensure control of its structural state and mechanical properties by means of non-destructive testing. The temperature range was chosen taking into account the possibility of direct γ → α′ martensitic transformation.

168-176 1210
Abstract

Ferritic-martensitic heat-resistant high-chromium steels (FMHS) with chromium content of 11 – 12 % are quenched to martensite from temperatures of 1050 – 1100 °С. Possible undesirable consequences of heating to such high temperatures are an increase in the size of austenite grains, increase in the amount of delta ferrite in the final structure, and a decrease in mechanical characteristics. In this work, the change of all these factors during heating of FHMS to quenching temperatures in the range of 950 – 1250 °С was studied. Ratios of the contents of martensite (its amount was identified with the proportion of austenite before quenching) and high-temperature delta ferrite on metallographic sections were analyzed. It was found that behavior of structure of the studied FHMS upon heating to temperatures of 1150 °С and above depends on the steels structural class. In steels whose structure at room temperature consists of martensite and delta ferrite, or in which delta ferrite begins to form at heating temperatures of 1200 °С and higher, size of austenite grain decreases with increasing temperature in the range of 1200 – 1250 °С, and the amount of delta ferrite – increases. Such structural transformations can be associated with features of the phase equilibrium diagrams of steels of this class. Such structural transformations can be associated with a change in the position and (or) inclination of boundaries of the high-temperature region of coexistence of austenite and delta-ferrite in the phase equilibrium diagrams of FHMS at a change in heating temperature in this range. Compression tests at 20 °С of 15Cr12Mn3SiMoW2VB steel samples after heat treatment with heating to temperatures for hardening 1000 – 1250 °С showed that formation of an additional amount of delta ferrite at temperatures above 1200 °С is a stronger factor than the refinement of austenite grains. This causes a decrease in yield strength of the samples quenched from these temperatures followed by high tempering.

177-183 766
Abstract

The article presents the metal-physical studies results of the structure formation effects in surface layers in the hard alloys of the WC–Co system under extreme thermal and deformation effects of pulsed laser radiation. It is shown that the structural organization and properties of hard alloys VK6, VK8, VK10 upon radiation treatment with a power density of 175 MW/m2 are determined by state of the zones which are formed around carbide inclusions due to the various kinds of stresses appearance at the “carbide-bond” composition boundaries, including thermostrictive and phase stresses. The result is dissolution of the carbides boundary zones due to contact melting, which is accompanied by mutual mass transfer of atoms at the boundaries in the “carbide-bond” system with the possible formation of a thin amorphous-like super hard shell. These processes make it possible to create compositions in hard alloys with a set of differentiated properties specified by varying the laser treatment process parameters and composition of the starting materials. After laser alloying with a radiation power density of 200 MW/m2, temperature gradients and thermal stresses appearing in the surface layers of hard alloys with coatings (cobalt, nickel) contribute to convective mixing of the molten coating components and their penetration into the hard alloy to a depth of more than 20 μm. Simultaneously, despite the extremely short laser pulse time (10–3 s), mass transfer of tungsten, carbon and titanium atoms from the melted boundary zones of carbides to the adjacent bond zones with their hardening is possible in the irradiated zones. It was established that after high-temperature laser heating, carbides, in contrast to the initial ones, achieve a globular shape of grains. They are dispersed, and stoichiometric characteristics change in the local zones bordering the bond (the complex type carbide CoxWyCz is formed). As a result, due to these processes, the surface layers’ viscosity of hard alloys and the irradiated products performance increase. Compared to non-irradiated samples of hard alloy, the ultimate strength increases by 15 %, strength and durability – by 30 – 40 %.

184-190 654
Abstract

The CompoNiAl-M5-3 high-temperature alloy based on nickel monoaluminide was obtained by selective laser melting (SLM) of a spheroidized powder with particle size in the range of 20 – 45 μm. The powder was manufactured using an integral technology including self-propagating high-temperature synthesis (SHS), briquette grinding, sieve and air classification followed with spheroidization of powder particles in a thermal plasma flow and ultrasonic purification of spheroidized particles from nanofraction. Using parametric studies, the SLM modes were tested on SLM 280H and TruPrint 1000 machines. Mechanical tests of the samples were carried out using the uniaxial compression scheme with the strain rate dε/dt = 10–4 s–1 in the temperature range 1023 – 1273 K. Scanning and transmission electron microscopy methods were used to study the influence of laser spot size on the evolution of microstructure and thermomechanical properties of the SLM-consolidated material in comparison with that obtained by hot isostatic pressing (HIP). The authors established the effect of HIP + HT (aging in vacuum) post-treatment on the structure and mechanical properties of the material. The yield strength at 1073 K of the alloy built on the additive machine with a laser spot diameter of 38 μm after SLM + HIP + HT was 500 MPa, which exceeded the yield strength of the HIP-samples by 220 MPa.

191-196 617
Abstract

High-entropy alloys (HEA) are multi-element materials and contain at least five elements of similar concentration. HEA are, as a rule, single- phase thermodynamically stable substitutional solid solutions, mainly based on a body-centered cubic and face-centered cubic crystal lattice. Solid solution stabilization during the crystallization of a high-entropy alloy is provided by the interaction of a number of factors, namely, a high mixing entropy and low diffusion rate of components, and a low growth rate of crystallites from the melt. The purpose of this work was to obtain new knowledge about the structure and properties of high-entropy films synthesized on a metal substrate during deposition of a multi-element metal plasma in argon atmosphere. The plasma was formed as a result of independent plasma-assisted electric arc cathodes of the following metals: Ti, Al, Cu, Nb, Zr sputtering. As a result of the performed studies, the deposition mode was revealed, which allows the formation of films of various thicknesses of close to equiatomic composition. Transmission electron microscopy methods have established that the films are multilayer formations and have nanoscale amorphous-crystalline structure. Microhardness of the films significantly depends on the ratio of number of the forming elements and varies from 12 to 14 GPa, Young’s modulus – from 230 to 310 GPa. Crystallization of the films was carried out by irradiation with a pulsed electron beam. As a result of processing, a two-phase state is formed. The main phase is α-NbZrTiAl with a volume-centered cubic crystal lattice with a parameter of 0.32344 nm; the second phase of CuZr composition has a simple cubic lattice.

197-205 676
Abstract

The authors investigated the microstructure, phase composition and mechanical properties of the steel-bronze composite obtained by electron beam additive manufacturing with simultaneous supply of aluminum bronze wires BrAMc9-2 and stainless steel 06Kh18N9T. X-ray diffraction analysis revealed that the composite contains 25 % (vol.) of aluminum bronze, which leads to the formation of a three-phase structure consisting of γ-Fe, α-Fe and α-Cu grains. According to scanning electron microscopy, the volume fraction of austenite, ferrite and bronze in the steel – 25 % bronze composite is 40.7, 35.7 and 23.6 %, respectively. Unstable conditions of the electron beam additive manufacturing process lead to the release of dispersed particles in austenite and ferrite grains. Dispersion-hardened copper particles with an average particle size of 40 nm, the volume fraction of which is 47 %, are isolated in austenite grains. Dispersion-hardened NiAl particles with a volume fraction of 20 % are isolated in ferrite grains, the average size of which is 44 nm. Transmission electron microscopy data indicate the coherent conjugation of arrays of dispersion-hardened particles with the matrix. Such a composite structure provides an increase in yield strength and tensile strength by an average of 400 and 600 MPa compared with yield strength and tensile strength of 06Kh18N9T steel obtained by electron beam additive manufacturing without bronze addition. Microhardness of the composite is on average 2.2 GPa, which is 0.4 GPa higher than that of 06Kh18N9T steel obtained by electron beam additive manufacturing without bronze addition.

PHYSICO-CHEMICAL BASICS OF METALLURGICAL PROCESSES

206-214 670
Abstract

Deoxidation (reduction of oxygen concentration dissolved in liquid metal) is an integral part of steel production technology. For obtaining deeply deoxidized metal, mainly aluminum is used at metallurgical enterprises. It should be taken into account that alloying elements of steels and alloys under certain conditions can act as deoxidizing elements, contributing to the complex nature of the deoxidation process. Almost all steels contain manganese in one concentration or another. The study of interaction processes in the Fe – Mn – Al – O – C system at steelmaking temperatures is of applied importance. In this paper, a thermodynamic analysis of the deoxidation ability of aluminum in oxygen-containing iron-manganese melts was carried out. At the same time, influence of carbon on course of the deoxidation process was taken into account. In the study, it is effective to use a technique for constructing the solubility surface of components in metal (SSCM) – a diagram that connects the compositions of liquid metal with the compositions of conjugated non-metallic phases. In the course of this work, oxygen solubility isotherms in the Fe – Mn – O system were calculated for the temperature range of 1550 – 1650 °C. For the Fe – Mn – Al – O – C (1600 °C) system, composite sections of the SSCM were constructed at fixed carbon concentrations in steel [C] = 0; 0.1; 0.4; 0.8 and 1.2 % (hereafter by weight). It is shown that with the simultaneous presence of manganese and aluminum in an oxygen–containing iron-based melt (at industrially significant concentrations [Al] = 0.001 – 0.010 % and [Mn] – less than 1.0 %), aluminum in the liquid metal will act as a deoxidizing agent, and corundum inclusions will be formed as interaction products. Complex deoxidation by aluminum and manganese with the formation of spinel is typical only for manganese-alloyed steels, where the concentration of manganese is more than 1.5 %.

215-221 972
Abstract

The paper presents the results of refining silicon of metallurgical grades based on leaching of impurities with inorganic acids. Silicon samples were studied by metallographic and X-ray fluorescent methods of analysis, as well as X-ray spectral microanalysis. To improve the quality of this alloying element, we carried out experimental work on its hydrometallurgical purification with solutions of various acids (10 % H2SO4 , HCl, HNO3 , 4 % HF) and their mixtures. Values of changes in the Gibbs energy were calculated for reactions of interaction with reagents of the main impurity inclusions recorded in the studied silicon samples (FeSi2 , Fe2Si, FeSi, AlFeSi, AlFeSi2 , Al3FeSi2 , FeSi2Ti, FeAlTiSi, TiSi2 , Ca2Si). The experiments were carried out on silicon samples with a particle size of –200 μm with constant stirring by a magnetic stirrer at a temperature of 60 °С, duration 1 h and L:S = 5:1. Determination of concentration of the impurity elements in the solution after leaching was made by the atomic emission method of analysis. When hydrofluoric acid is used as a solvent, the best results are obtained for purification of iron, aluminum, and titanium (concentration in solution, mg/dm3, respectively: 2380, 831, 145). The maximum concentration of calcium in the solution (147 mg/dm3 ) was achieved by hydrochloric acid treatment of fine silicon. The most effective for transferring impurities into solution is a mixture of sulfuric and hydrofluoric acids at a ratio of 1:1. Using a mixture of H2SO4 and HCl as a solvent (at a ratio of 1:3) made it possible to achieve sufficiently high mass concentrations of impurity elements in the leaching solution. The degree of silicon purification from iron was 33.32 %, aluminum – 54.64 %, calcium – 65.77 %, titanium – 15.64 %.

INNOVATIONS IN METALLURGICAL INDUSTRIAL AND LABORATORY EQUIPMENT, TECHNOLOGIES AND MATERIALS

222-228 882
Abstract

On the basis of metallographic studies, the authors determined the characteristic defects of grinding balls rolled from the rejects of continuously cast billets of K76F rail steel. Relationship of the presence of internal defects of the balls with their impact resistance was established. Defects in the form of internal cracks with accumulations of non-metallic inclusions in the area of their localization and flocks have the greatest impact on the reduction of balls impact resistance. Such defects are the cause of balls destruction during impact resistance tests in 62 and 17 % of cases, respectively. The effect of internal cracks without significant accumulations of non-metallic inclusions and quenching microcracks located along the boundaries of the phase interface was estimated at 12 and 9 %. The regularities and mechanism of influence of the rejects chemical composition of K76F rail steel billets on the probability of destruction of the balls produced from them during impact resistance tests were established. An increase in sulfur content in the billets of the studied rail steel reduces impact resistance of the balls produced from them, as it contributes to formation of non-plastic sulfides that concentrate in the area of internal cracks. An increase in hydrogen content in rail steel naturally contributes to an increase in probability of formation of the flocks, which significantly reduce the balls stability to shock loads. An increase in carbon content in the initial billets affects the increase in probability of destruction of K76F steel balls during copra tests. It is explained by formation of cementite-type carbides when carbon content corresponding to the eutectoid steel is reached. In general, the relative degree of influence of the K76F rail steel chemical composition on impact resistance of grinding balls is 48 %.

229-235 672
Abstract

In recent years, there is a trend of improving the performance and efficiency of all existing measuring instruments due to a leap in technology. Almost every industry uses a variety of technologies that apply temperature control. Temperature of a heated body can be estimated by measuring the parameters of its thermal radiation, which are electromagnetic waves of different lengths. Temperature measurement is necessary for comfortable automatic control and management of production processes. The use of non-contact means makes it possible to measure the temperature of, firstly, moving objects, secondly, objects in inaccessible places, thirdly, to avoid damage to the measuring instruments when controlling large temperatures. High speed, the possibility of measuring temperature without disconnecting the object from the technological process, ensuring personnel safety, temperature measurement up to 3000 °C – these are the advantages of non-contact temperature measurement method. To obtain reliable values when measuring thermophysical quantities it is necessary to know the processes occurring in interaction of the measuring device or sensor with the object of measurement. These processes affect the magnitude of the measurement error, that is, magnitude of the result deviation from the true value of the measured parameter. This paper describes the errors of non-contact temperature measurement of pyrometers, namely total radiation pyrometer, partial radiation pyrometer, spectral ratio pyrometer, as well as shows the results of comparative calculations between them. Expressions for the evaluation of methodical errors of total radiation, partial radiation and spectral ratio pyrometers are given, as well as the results of comparative calculations of errors are shown.

INFORMATION TECHNOLOGIES AND AUTOMATIC CONTROL IN FERROUS METALLURGY

236-243 376
Abstract

The article deals with the formation of model implementations of time series of data (based on in-situ data) of controlled and uncontrolled impacts in simulator-training and digital modeling systems. Such simulators are becoming increasingly widespread due to the development of information and computer technologies, automated research systems, training systems, digital modeling technologies (APM modeling), as well as digital counterparts and advanced control systems. The formed implementations of impacts can characterize situations of normal process flow, emergency and pre-emergency states, or specific representative situations for training operators and technological personnel, software testing, research and tuning of algorithms and search for optimal control actions. Using examples from the metallurgical industry, the possibility of forming several interrelated impacts based on models of nonlinear dynamics and multivariate dynamic databases is shown. The Lorentz system describing the thermal convection of a fluid medium is considered as a model of the impacts formation. The model parameters for the low- and high-frequency components are determined separately, by processing in-situ data. Next, a training sample is formed using normalization and relay-exponential smoothing operations. The implementations of the actions are formed taking into account the mutual correlation of data based on models of chemical dynamics and are adjusted to the specified properties on a limited sample of a given volume with the required accuracy using a generator in the form of a closed dynamic system. The generator in form of a closed dynamic system is built on the basis of a multidimensional generating autoregressive model with adjustable coefficients. An example of the formation of data series on technological parameters of a blast furnace (the degree of wear of the furnace lining, temperature sensor readings and heat flux density) is shown.

244-252 641
Abstract

The article considers general characteristics of the algorithm for prediction of the composition of the final slag in a blast furnace in real time. This algorithm is based on fundamental knowledge on the processes occurring in the furnace and general laws of transient processes. It allows predicting at the current moment of time and for every hour ten hours ahead. A linearized model of the blast furnace process and a natural-mathematical approach are used. The model takes into account the dynamic characteristics of blast furnaces in various impact channels, which change and depend on the type of impact, operating parameters of the furnaces and properties of the melted raw material. This makes it possible to adjust the model to operating conditions of the object, to take into account changes in the composition and properties of iron ore and coke, blast and regime parameters of blast furnace smelting when modeling. The software of the information-modeling system for prediction of the composition and properties of the final slag in a blast furnace in real time was developed in the C# programming language based on the ASP.NET MVC framework using the .NET 5 cross-platform. The web application includes the following main functions: visualization of change APCS parameters and design parameters over time; slag mode diagnostics; modeling of transient processes of composition and properties of slag; prediction of slag composition and properties in real time and prediction history. The software architecture is described and its operation is illustrated. An assessment of the accuracy and reliability of the simulation results based on statistical indicators was carried out. The root-mean-square deviation of the predicted basicity of the CaO/SiO2 slag from that measured at taps is 0.023, the prediction reliability is 92 %, which indicates a satisfactory agreement between the predicted and actual values of the content of individual components in the slag. The information modeling system developed on the basis of the presented algorithm is integrated into the information system of the blast furnace shop of PJSC Magnitogorsk Iron and Steel Works.

ECONOMIC EFFICIENCY OF METALLURGICAL PRODUCTION

253-264 1020
Abstract

The idea of ESG (Environmental – Social – Governance) is based on the concept of sustainable development and represents a fundamentally new approach to making business, characterized by the involvement of companies in solving environmental, social and management problems. Despite the fact that at the international level, the formation of an institutional framework in the field of ESG was initiated 74 years ago, in our country this process was launched only in 1996 with the adoption of the Concept for the Transition of the Russian Federation to Sustainable Development. Ratification by Russia of a number of international documents – the UN Framework Convention on Climate Change (1992), the Kyoto Protocol (1997), the Paris Agreement on Climate (2015) and the active promotion climate policy by most countries of the world aimed at preserving ozone in the atmosphere layer, necessitated the institutionalization of ESG principles at the national level. The activation of this process took place in 2020 and by mid-2021, the national framework in the field of ESG was created. Ferrous metallurgy is one of the basic sectors of the national economy. The discrepancy of ferrous metallurgy enterprises with the ESG criteria, as well as the high carbon and energy intensity of the products of this industry, in the future may cause the loss of sales markets and disruption of sustainable development. The stages of institutionalization of ESG principles at the international level and in the Russian Federation are considered. The necessity of reducing the carbon intensity and energy intensity of ferrous metallurgy products is substantiated in connection with the emerging global trend – the transition of most countries of the world to a low-carbon economy due to the gradual abandonment of coal energy and the gradual cessation of «inefficient» subsidizing of fossil fuels.



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)