Preview

Izvestiya. Ferrous Metallurgy

Advanced search
Vol 66, No 3 (2023)
View or download the full issue PDF (Russian) | PDF

METALLURGICAL TECHNOLOGIES

272-282 1051
Abstract

The article discusses influence of the main technological parameters of pendulum surface plastic deformation (SPD) on the mechanical properties of surface layer of cylindrical parts made of carbon steel. Using the hardness tester HBRV-187.5 and the microhardness tester HMV-G21, we determined hardness of the surface layer, microhardness and depth of the work-hardened layer of hardened parts. In addition, the results of calculating the hardening degree are presented, which is important information for evaluating the effectiveness of SPD method in terms of improving the metal mechanical properties. Experimental studies showed that after pendulum SPD (at different processing modes), hardness of the surface layer increases by 9 – 12 % compared to hardness of the original surface, and the microhardness increases by 1.5 – 1.7 times, which leads to a significant hardening of the cylindrical billet surface layer. Depth of the hardened layer varies in the range of 0.9 – 1.1 mm, while the hardening degree is 45 – 65 %. Using the software package Statistica 10.1, which allows solving optimization problems based on statistical analysis and building an optimization model, we determined the optimal modes of hardening by pendulum SPD. These modes simultaneously provide both the maximum depth of the hardened layer and the highest hardening degree of the surface layer. They are formed under the following processing modes: radial interference t = 0.15 – 0.2 mm; longitudinal feed s = 0.07 – 0.11 mm/rev; billet rotation frequency nb = 160 – 200 min−1; frequency of the working tool pendulum movement nt = 110 – 130 strokes/min; angular amplitude of the working tool α = 35 – 40°. According to the results of experimental data and numerical calculations, it was established that the average grain size in pendulum SPD decreases by 30 – 40 % compared to the initial size, and the dislocation density increases by 2.5 times.

283-289 1112
Abstract

Thermal mode of the working roll barrel in a hot-rolling mill is a significant technological factor that affects the steel strip quality, its cross section, and durability of working rolls. A reliable calculation of the temperature mode parameters makes it possible to determine the thermal profile shape and the best profiling of the roll barrel surface, as well as to reduce defects in steel strip flatness. The most common is the balance model of roll thermal mode. Its accuracy is largely determined by thermophysical constants, in particular, the heat transfer coefficients of the rolls: contact – with the strip and convective – with cooling water. There are various data on the values ​​and methods for calculating these coefficients, but most of them do not take into account the presence of pauses in rolling rhythm of the finishing group of stands, the duration of which is significant. Failure to take this factor into account entails significant errors in calculations of the thermal mode. A passive experiment was carried out, during which surface temperatures of the working rolls’ barrels were measured using a thermocouple at several points along their length immediately after they fell out. Also, the parameters of steel strip rolling before roll change were determined: rolling rhythm coefficients, strip reduction in stands, water consumption for cooling rolls and some others. As a result, an empirical equation was obtained for calculating the contact heat transfer coefficient, taking into account the main technological factors. The use of refined coefficients for calculating the temperatures of the roll barrel significantly increased the accuracy of predicting the thermal mode, in particular, the thermal profile of the working roll, based on values ​​of the rolling parameters.

290-293 589
Abstract

Metallurgical production is a highly energy-intensive process, and the search for solutions to reduce energy costs remains an urgent task for all stages. In this regard, the production of finished rolled products is considered as the most promising direction for the implementation of energy-saving technologies. There are two ways to reduce energy costs in hot rolling of section bars: saving energy for heating and improving the use of the main equipment to reduce intermediate energy costs. Due to the difference in silt conditions at the moment of capture and at the steady stage of the rolling process, a reserve of retracting friction forces arises, which can be used for additional shaping in non-drive devices and thereby increase the efficiency of the main equipment and reduce overall energy costs. For the practical implementation of the proposed concept, dependence was obtained that makes it possible to estimate the power potential that is not used at the steady stage of the rolling process. Using the obtained dependence, it was found that when rolling in smooth rolls, the potential of friction forces is used only by 50 – 60 %, and when rolling in calibers, by 35 – 40 %. It was experimentally established that during the rolling of shaped sections in passes with an elongation ratio of less than 1.10 – 1.15, more than 50 % of the energy is spent on idling. However, by replacing drive stands in these passes with non-drive cassettes (in continuous groups), it is possible to increase the efficiency of adjacent stands by 4 – 5 % and reduce energy costs.

MATERIAL SCIENCE

294-301 727
Abstract

The use of metallic products 3D-printing is a modern, promising technology that improves production efficiency. However, using this technology is associated with a number of problems, for example, with increased microstructural heterogeneity and defects in metal. Therefore, it is necessary to carry out researches to identify 3D-printing modes ensuring the most homogeneous, stable and non-defect structure. In this work, a study was made of the process of structure formation of 30KhGSA steel in the process of Wire and Arc Additive Manufacturing (WAAM) under various printing modes. Microstructural analysis, microhardness measurement and fractal analysis were used for assessment of the obtained billets. In all surfacing modes, a significant structural inhomogeneity of the deposited billet was revealed, which is explained by the thermal effect of the deposited layer on the already crystallized metal. Nevertheless, we found the mode that gives the most favorable microstructure in terms of its uniformity and equiaxed grains. With an increase in WAAM heat input values, an increase in the productivity of the process is observed and a decrease in the number of pores in the material is recorded. However, when the heat input of the surfacing process exceeds 1000 J/mm, the structural inhomogeneity of the material increases and its microhardness significantly decreases. Based on the studies, as a WAAM 3D-printing mode for Np-30KhGSA alloy, a mode with a heat input of about 920 J/mm can be chosen, which provides the lowest structural inhomogeneity and a sufficiently high productivity of the growth process with the absence of defects in the form of pores and elements of not melted wire.

302-310 571
Abstract

To improve the tribotechnical behavior and heat resistance of steel 1035, composite metalloceramic Fe–Al/HfC coatings were prepared by electrospark deposition. A non-localized anode was used as an electrode consisting of a mixture of iron and aluminum granules with a molar ratio of 3:2 and with the addition of HfC powder. The cathode gain had positive values indicating that HfC powder can be deposited on steel 1035 using the Fe60Al40 anode mixture. Moreover, the cathode gain monotonically increased with the increase in addition of HfC powder to the anode mixture. The coatings structure is represented by a matrix of FeAl intermetallic compound reinforced with HfC grains, which corresponds to the structure of a metalloceramic composite. Concentration of HfC in the coating increased with the addition of HfC powder to the anode mixture. Deposition of Fe–Al/HfC coatings according to the proposed technique allows reducing the friction coefficient of steel 1035 from 6 to 40 vol. %. Depending on the concentration of HfC in the anode mixture, the wear resistance of Fe–Al/HfC coatings varied nonmonotonically with a maximum at 8 vol. %. The use of Fe–Al/HfC coatings makes it possible to increase the wear resistance of the steel surface to 10 times. Comparison of the final weight gain of the samples after 100 h of oxidation resistance tests at a temperature of 700 °C allows us to conclude that electrospark deposition Fe–Al/HfC coatings can increase the oxidation resistance of steel 1035 by 1.7–2.2 times. Analysis of the study results shows that adhesion of Fe–Al composition to HfC is weak. This was reflected in decrease in hardness, wear resistance and oxidation resistance of coatings with an increase in the concentration of HfC in the anode mixture above 8 vol. %.

311-319 442
Abstract

The effect of accelerated cooling after cross-helical rolling of X70 low-carbon steel on the formation of structures and mechanical properties under static tension and impact bending was investigated. The use of interrupted accelerated cooling of steel after cross-helical rolling with exposure at 530 °C (mode I) and continuous accelerated cooling (mode II) leads to the formation of different types and ratios of structures in steel. After rolling according to mode I, the structure is characterized by the presence of ferrite, troostite, granular bainite, and fine Fe3C carbides. After rolling according to mode II, the structure is characterized by the formation of lath bainite and large sections of the martensitic-austenitic (MA) component up to 1 – 2 µm in size. It is shown that a decrease in the fineness of ferrite grains in steel after cross-helical rolling in modes I and II from 12 to 4.6 – 4.3 μm, the formation of a bainitic phase, and hardening of the matrix with carbides led to an increase in the yield strength of steel up to 440 and 490 MPa and tensile strength up to 760 and 880 MPa. Carrying out helical rolling according to mode I makes it possible to significantly increase the low-temperature fracture toughness of steel (KCV–70 °С = 160 J/cm2) compared to the hot-rolled state (KCV–70 °С = 11 J/cm2) and reduce the cold brittleness of steel to the temperatures below –50 °C. The use of continuous accelerated cooling (mode II) does not allow increasing the cold resistance of steel due to the formation of the lath bainite structure and large areas of the MA component.

320-326 520
Abstract

The work is devoted to the study of strain localization at macroscale level during parabolic mechanical hardening and pre-fracture under quasi-static loading of a carbon steel – stainless steel bimetal. The problem of estimating the scale of the phenomena that determine plasticity is decisive in the development of any theories of plastic deformation, in particular, dislocation theories. The main difficulty in constructing such theories is the reconciling the dislocation scales, characteristic for most deformation and mechanical hardening mechanisms, with macroscopic parameters of deformation processes. In the framework of the autowave model of localized plastic deformation, this problem can be reduced to the possibility of obtaining parameters from the results of macroscale observations of localized plastic flow development. During the experiments, it was confirmed that in a bimetal at any forming stage, a specific pattern of localization centers distribution is spontaneously generated - a pattern of localized plastic flow. The shape of such patterns is determined by the law of mechanical hardening acting in the material. It is shown that the observed localization patterns can be used as an informative feature in predicting the plasticity margin. In the process of uniaxial tension at the stage of parabolic mechanical hardening of the bimetal, the deformation mode is realized with the formation of several potential fracture centers. It was established that at the pre-fracture stage, during the time evolution of the wave pattern of deformation localization, the zone of active plastic deformation narrows, but the number of centers in it either remains the same with a decrease in the distance between them, or even increases. The result of this process is the formation of a macroscopic neck, and then fracture. At the pre-fracture stage, the collapse point indicates the place of future fracture and signals the need to stop the deformation process in order to avoid the fracture of the bimetallic material. Thus, the well-known manifestation of deformation macroscopic localization – formation of a neck – is preceded by complex phenomena of mutually coordinated motion of localized plasticity centers at the pre-fracture stage.

327-329 592
Abstract

The methods of modern physical materials science were used to analyze the evolution of microhardness, tribological properties, dislocation substructure and phase composition of the rails with increased wear resistance and contact endurance of DT 400 IR category after missed tonnage of 187 million gross tons on the experimental ring of Russian Railways. It is shown that extremely long-term operation of the rails is accompanied by a decrease (3.1 times) in wear parameter of the rolling surface and an increase (1.4 times) in microhardness, scalar dislocation density (1.5 times) and Fe3C carbide content (1.24 times). Operation of the rails led to a decrease in the crystal lattice parameter, which correlates with an increase in the content of iron carbide. We made the assumptions about physical causes of the change in parameters.

PHYSICO-CHEMICAL BASICS OF METALLURGICAL PROCESSES

330-336 542
Abstract

The authors propose a simple theory of thermodynamic properties of liquid nitrogen solutions in alloys of the Fe – Ni – Cr and Fe – Ni – Mo systems. This theory is analogous to the theory for liquid nitrogen solutions in binary alloys of the Fe – Cr and Fe – Ni systems proposed previously by the authors in 2019 and 2021. The theory is based on lattice model of ternary liquid solutions of the Fe – Ni – Cr and Fe – Ni – Mo systems. The model assumes a FCC lattice. Atoms of Fe, Ni, Cr and Mo are deposed in the sites of the lattice. Nitrogen atoms are located in octahedral interstices. The nitrogen atom interacts only with the metal atoms located in the lattice sites neighboring to it. This interaction is pairwise. It is assumed that the energy of this interaction depends neither on composition nor on temperature. It is supposed that the liquid solutions in the Fe – Ni – Cr and Fe – Ni – Mo systems are perfect. Within the framework of the proposed theory, the relation is obtained that expresses the Wagner interaction coefficient between nitrogen and chromium in liquid nickel-based alloys \(\varepsilon _{\rm{N}}^{{\rm{Cr}}}\)(Ni). The right-hand part of the appropriate formula is a function of the Wagner interaction coefficients between nitrogen and chromium \(\varepsilon _{\rm{N}}^{{\rm{Cr}}}\)(Fe) and between nitrogen and nickel \(\varepsilon _{\rm{N}}^{{\rm{Ni}}}\)(Fe) in liquid iron-based alloys. A similar relation is obtained for the Wagner interaction coefficient between nitrogen and molybdenum in liquid nickel-based alloys \(\varepsilon _{\rm{N}}^{{\rm{Mo}}}\)(Ni). According to the first of these formulas, the value \(\varepsilon _{\rm{N}}^{{\rm{Cr}}}\)(Ni) = –21,9 at a temperature of 1873 K is calculated. This corresponds to the value of the Langenberg interaction coefficient \(e _{\rm{N}}^{{\rm{Cr}}}\)(Ni) = –0,108, which coincides with experimental estimate. According to the second formula, the value \(\varepsilon _{\rm{N}}^{{\rm{Mo}}}\)(Ni) = –14,3 is calculated at a temperature 1873 K. This corresponds to the value of the Langenberg interaction coefficient \(e _{\rm{N}}^{{\rm{Cr}}}\)(Ni) = –0,036, which is in satisfactory agreement with the experimental estimate \(\varepsilon _{\rm{N}}^{{\rm{Mo}}}\)(Ni) = –15,1; \(e _{\rm{N}}^{{\rm{Cr}}}\)(Ni) = –0,038.

Materials of the International Scientific Conference “PHYSICO-CHEMICAL FOUNDATIONS OF METALLURGICAL PROCESSES” named after Academician A.M. Samarin, Vyksa, October 10 – 14, 2022

337-343 982
Abstract

Aluminum is one of the most common deoxidizers; when it is used in the melt, refractory inclusions of alumina are formed. The presence of these non-metallic inclusions negatively affects the purity of liquid steel, mechanical properties, makes casting difficult due to tightening of the steel-pouring fittings. The modification of alumina inclusions with calcium promotes the formation of liquid calcium aluminates, which leads to an acceleration of their removal from the metal due to a higher ascent rate. Having a high affinity for sulfur, calcium reduces its harmful effect by binding it with the formation of calcium sulfides, reducing the anisotropy of steel properties during further rolling. For steel treatment with calcium, injection wires with a calcium-containing filler are used. As a filler can be used: electrolytic calcium, silicocalcium, aluminum-tremic calcium, or ferrocalcium. The paper describes results of the tests carried out on a calcium-containing wire filled with electrolytic calcium and silicocalcium. It is shown that the consumption of calcium when using silicocalcium wire is on average 35 % higher in comparison with calcium injection wire filled with electrolytic calcium. The calcium recovery rate for different steel grades was evaluated using calcium-containing wires of different designs and filler. In this work, the steel pourability was analyzed. As a determining parameter, dependence of change in position of the tundish stopper rod on calcium content in the metal was considered in the sample from CCM. It was established that a wire filled with electrolytic calcium shows a more effective result in comparison with a silicocalcium wire.

344-355 1015
Abstract

The elemental and phase compositions of electric arc furnace (EAF) dust from PJSC Severstal were studied. We carried out the thermodynamic modeling of zinc and lead selective extraction process and determined its possible mechanisms. EAF dust was heated in the temperature range of 20 – 1300 °C in vacuum resistance furnace and the Tamman furnace with flowing argon. Experiments in the vacuum resistance furnace with linear heating showed that lead and zinc removal from the sample occurs in the temperature range of 800 – 1200 °C, with higher lead removal rate. Intensive lead removal was observed at temperature above 1000 °C, while intensive zinc removal occurs at temperature above 1200 °C. Clarifying isothermal experiments performed in the Tamman furnace showed that lead complete transition to the gas phase was achieved at a temperature of 1100 °C (holding time – 12 min) and at a temperature of 1200 °C (holding time – 6 min or more). At the same time, zinc removal was observed in the amount of 14.4 % ratio and 32.2 % ratio, respectively, which allows us to conclude that it is possible to consistently obtain two products: lead and zinc mixture and zinc not contaminated with lead. When comparing experimental and thermodynamic modeling data, the reactions that are most likely to occur during the carbon reduction of lead- and zinc-containing phases were determined.

SUPERDUTY STEEL

356-366 1414
Abstract

The Russian new nuclear reactors are provided with a special core catcher vessel device (cc-vessel) designed to minimize the consequences of a severe beyond design basis accident at a nuclear power plant, when the reactor pressure vessel collapses and the core melts. For manufacture of the cc-vessel structural elements, low-carbon unalloyed or low-alloyed steels are used. When a severe beyond design basis accident develops, the cc-vessel’s body is subjected to extreme temperature and force loads, which can lead to degradation of the structure, loss of strength and failure of the entire cc-vessel. To calculate the strength characteristics of the cc-vessel, which ensure its safe and reliable operation, the detailed data are required on the structure and mechanical properties of low-carbon steels at high temperatures and after extreme thermal actions simulating the development of a severe beyond design basis accident. The paper analyzes data on the structure and mechanical properties (tensile strength, crack resistance, toughness and cyclic strength) of a number of low-carbon steels under extreme temperature and force actions, including conditions simulating the development of a severe beyond design basis accident at a nuclear power plant, in order to select the material for the design of cc-vessel of nuclear reactor. New data on the structure, mechanical properties, and thermal diffusivity in a wide temperature range of a Cr – Mo steel (Russian Standard – 15KhM) as a candidate structural material for the manufacture of the cc-vessel body are presented. The low content of manganese and alloying with molybdenum and vanadium in 15KhM steel provides a finer grained structure and eliminates the steel’s tendency to temper brittleness.

INNOVATIONS IN METALLURGICAL INDUSTRIAL AND LABORATORY EQUIPMENT, TECHNOLOGIES AND MATERIALS

367-375 561
Abstract

For trouble-free operation without loss of elastic and inelastic properties of particularly critical elements of electrical-to-mechanical vibration converters during a long period of cyclic operation, it is necessary, in addition to studying the fatigue characteristics of materials used for their manufacture, to study these alloys for frequency stability, since minor deviations in the frequency of natural oscillations lead to unacceptable errors in the operation of such high-precision products. To carry out such studies, we developed and constructed an original installation, in which sinusoidal loading is carried out according to the “soft” scheme of flat samples cantilever bending operating in self-oscillation mode. The frequency of cyclic loading in this installation is generated by current pulses, which are a response to the frequency of the test sample natural oscillations converted using electronics.  As a result, frequency equality is achieved in the test process. An algorithm for calculating stresses depending on the loading amplitude of steel samples of different geometric shapes was developed. It is shown that the stress on the sample calculated by the deformation amplitude in all cases is 8 – 10 % higher than the stress calculated by the force, regardless of the shape of the proposed samples. To verify the proposed research method, martensitic-aging steel was tested at loads close to the fatigue limit, since frequency stability in this range is of great interest. We obtained the frequency characteristics in the multi-cycle test area. It was determined that with an operating time of 50 million loading cycles, the frequency change was 0.75 Hz. The dynamics of frequency stability was revealed: the frequency changed most intensively during the first 10 million loading cycles, during this time the frequency changed by 0.54 Hz.

INFORMATION TECHNOLOGIES AND AUTOMATIC CONTROL IN FERROUS METALLURGY

376-386 737
Abstract

The article discusses the main structural features of radial-shear rolling mini-mills and their most common sizes. A generalized algorithm for designing such mills using modern CAD systems is described. The main approaches to the methodology of software adaptive design of models in engineering are listed with their features and differences. In particular, the methodology of horizontal modeling, explicit modeling methodology, and resilient modeling strategy are considered. The article describes the method of virtual squeezes and presents the main geometric scheme of the spatial position of the rollers of the longitudinal profile. The data obtained as a result of the calculations were encoded and summarized in tables. The formulas presented were used in the parametric design of the roller unit of the three-roller mill 30-70 using Autodesk Inventor software. The obtained parametric model, using classical formulas of the virtual squeezes method, allows for automatic reconstruction of the deformation zone for new initial parameters. The developed model is applicable for three-roller mills with working roll angles δ = 5 – 15° and feed angles β = 18 – 22°. The article presents sketches and diagrams of the constructed model for different rolling angles – 5, 10, and 15°. As the rolling angle increases, a noticeable increase in the conicity of the roller is observed. The vector of future research on improving the obtained software model was indicated. Further research on improving the parametric model will include expanding the set of existing parameters to include the frame and full set of roller connections – neck, cover, pressing device, etc.



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)