METALLURGICAL TECHNOLOGIES
Quality and operational properties of rails determine duration of their operational service. The main parameters that determine quality of steel are chemical heterogeneity and presence of non-metallic inclusions in metal. Efficiency of homogenization of metal melt and its refining from non-metallic inclusions in tundish is largely determined by organization of hydrodynamic processes, internal geometry of ladle, and presence of additional refractory elements. Using physical and mathematical modeling, study of the influence of additional refractory elements of various configurations of intermediate ladle on processes of melt flow was carried out. Physical modeling of hydrodynamic processes in the tundish taking into account requirements of similarity theory was made on specially created laboratory-experimental complex. Numerical experiments were carried out using computational fluid dynamics methods (finite volumes) on three-dimensional turbulent mathematical model with a singlephase representation of metal melt flow in tundish. To evaluate efficiency of melt homogenization according to results of physical and mathematical modeling, new technique has been developed based on analysis of distribution of time of liquid placement in continuous flow reactor. According to the results of experiments, configuration of the internal volume of tundish of four-strand CCM is proposed. A construction is considered that provides effective homogenization of molten rail steel and its refining from non-metallic inclusions. The design of full-profile compartments was developed and tested under industrial conditions, which ensure rational organization of melt flows, its homogenization and efficient refining of rail steel from non-metallic inclusions in the tundish. Industrial research was carried out under the conditions of four-strand CCM No. 1 of EAF shop at JSC “EVRAZ ZSMK”.
The article describes the study of welding processes with the subsequent control of cooling of full-profile rail joints, produced by passing alternating electric current pulses after welding. The influence of welding modes on the quality of welded joint was investigated. Welding was carried out on a resistance butt welding machine MCP-6301 in conditions of the rail welding company LLC “RSP-M” (RSP-29). For research, the samples of P65 type full-profile rails of DT350 category 600 mm long were cut out. The isothermal holding conditions after welding were controlled using a personal computer with a change in the program of the SIMATIC S7-300 industrial controller and the software SIMATIC STEP 7, which allows modes of controlled cooling to be set. The control program was written in the LAD graphic language. To search for optimal modes of controlled cooling, a complete factor experiment N = 2k was carried out. Non-heat-treated joints were tested for three-point static bending according to the state standard STO RZD 1.08.002 – 2009 “Railway rails, welded by electric contact method”. Static bending tests were carried out on the press of PMS-320 type. Values of the force arising during bending Pbend and the bend deflection fpr at which the control sample is destroyed, were determined, as well as maximum values of these indicators if the sample was not destroyed during the tests. During the experiments, regression models were obtained for output parameters of the bending force and bend deflection. Macrostructure of the samples and distribution of the metal hardness on rolling surface of the rails welded joint were studied. A new method of resistance butt welding was developed, which makes it possible to obtain a welded connection of P65 type rails of DT350 category with properties that exceed the technical requirements of the mentioned state standard.
Obtaining castings of given quality is the main task of foundry production. One of the stages of casting technology is solidification of melt in the mold. When studying the process of castings solidification, it is necessary to fully take into account all the features of heat transfer between casting and mold. Influence of various thermophysical parameters of alloy and mold material on casting formation is considered. In the analysis, original mathematical models were used to calculate the coefficient and time of complete solidification of castings in sand-clay and metal forms. These models take into account geometric parameters of casting, main thermophysical parameters of casting metal and mold material, heat transfer conditions at crystallization front, on casting-mold boundary and on the mold surface. Analysis of dependence of time and rate of castings solidification on thermophysical parameters (heat capacity, density, heat conductivity of casting material and mold, specific heat of metal crystallization) was carried out. Storage capacity and process of heat storage are quite fully characterized by the value of heat storage coefficient. This coefficient practically determines the rate of heat loss by the casting which plays a decisive role in its properties forming. Therefore, this parameter is selected for a comprehensive analysis of thermal processes occurring in casting and mold. The influence of thickness and thermal conductivity of chill paint layer on solidification of castings in metal molds is considered. The basic calculation formulas and initial data are presented. Calculations were carried out for castings of the following types: endless plate, endless cylinder, ball. The results of simulation of solidification process parameters are presented in graphic form. Using various alloys as an example, it has been shown by calculation that when changing composition and properties of mold material, it is possible to change time and speed of alloys solidification in a wide range. In this case, processes of forming the structure and properties of castings are controlled.
During the research, rolled scale and gas cleaning slimes from oxygen-converter workshop No. 1 of JSC “EVRAZ ZSMK” were used as iron-oxide-containing materials. Semi-coke from brown coals of the Berezovskoye deposit of the Kansko-Achinsk basin (temperature of semi-coking is 750 °C), coke fines of PJSC “Coke” and dust from coke dry-quenching plant of JSC “EVRAZ ZSMK” were used as carbon reducing agents. Total iron, FeO and Fe2 O 3 oxides amount to 73.3, 75.5 and 20.9 % in scale, 41.2, 4.7 and 53.7 % in sludge, respectively. Sludge also contains 4.3 % of total carbon and 20.6 % of CaO. Brown-coal semi-coke, coke fines and coke dust contains carbon and volatiles 94.05 and 9.5 %, 97.50 and 2.1 %, 97.47 and 1.6 % on dry ashless weight, respectively. For metallization of furnace charges with composition: scale, slime–semi-coke, coke fines, dust with addition of 10 % water-soluble binding–molasses, strong unroasted briquettes were pressed. Metallization modes of analyzed charge compositions were thermodynamically predicted and technologically determined. Metallization degree and metal iron content at usage of brown-coal semi-coke were found to be 97.5 and 90.2 % for scale, 97.5 and 71.3 % for sludge; of coke fines: 70.7 and 61.9 % for scale, 68.9 and 48.4 % for sludge; of coke dust: 72.1 and 62.6 % for scale, 69.2 and 48.2 % for sludge. The possibility of achievement the metallization degree of 97.0 – 98.0 % was established for briquetted charge from scale – brown-coal semi-coke with 92.0 – 93.0 % of total iron, 89.8 – 90.6 % of metallic iron, 2.8 – 3.2 % of FeO, 0.06 – 0.08 % of S, 0.016 – 0.018 % of P, 1.7 – 1.9 % of C, 1.0 – 1.2 % of CaO and 0.25 – 0.35 % of MgO at 1173 K and duration of 40 min.
ECOLOGY AND RATIONAL USE OF NATURAL RESOURCES
MATERIAL SCIENCE
Modification of the surface of VK10KS solid alloy with titanium alongside with boron by the method of pulse-plasma exposure (electro-explosive alloying) is considered. In this case, a superhard (27,500 MPa nanohardness) layer is formed with a thickness of 2.0 – 2.5 μm and a low (μ = 0.10) friction coefficient compared to the friction coefficient of a hard alloy in the sintered state (μ = 0.41). This layer consists of finely dispersed high-hard phases TiB2, (Ti, W)C, W2C (according to scanning, transmission electron microscopy and X-ray phase analysis). Below is a hardened (with a nanohardness of 17,000 MPa) surface layer (heat affected zone) 10 – 15 μm thick, identified by W2C and WC carbides and alloyed with a cobalt binder. This layer smoothly passes into the base. By profilometric studies it was established that after electroexplosive alloying with titanium and boron, the roughness increases (Ra = 2.00 μm) compared to the initial one (Ra = 1.32 μm), but remains within the specifications (Ra = 2.50 μm). The authors have revealed changes that occur in the surface carbide and near-surface cobalt phases during electroexplosive alloying. In the carbide phase, accumulations of dislocations were indicated. In the cobalt binder, deformation bands (slip bands), single dislocations, and also finely dispersed tungsten carbide precipitates were found. This change can be explained by stabilization of the cubic modification of cobalt, the crystal lattice of which has a large number of slip planes during deformation and a greater ability to harden compared to the hexagonal modification of cobalt. Additional alloying with a cobalt binder will positively affect the operational stability of tungsten carbide alloys as a whole due to their stabilization.
INNOVATIONS IN METALLURGICAL INDUSTRIAL AND LABORATORY EQUIPMENT, TECHNOLOGIES AND MATERIALS
INFORMATION TECHNOLOGIES AND AUTOMATIC CONTROL IN FERROUS METALLURGY
ECONOMIC EFFICIENCY OF METALLURGICAL PRODUCTION
PERSONNEL TRAINING FOR METALLURGICAL INDUSTRY
ISSN 2410-2091 (Online)