Preview

Izvestiya. Ferrous Metallurgy

Advanced search

NANOCRYSTALLINE THIN-LAYER COMPOSITE COATINGS: PRODUCTION, STRUCTURE AND PROPERTIES

https://doi.org/10.17073/0368-0797-2016-4-264-270

Abstract

The authors have used high degree of deformation (rolling on the great degree of deformation and the shift under high (5 GPa) pressure) to receive nanocrystalline structural state of the materials based on aluminum and titanium. The received materials in the nanocrystalline state have been used to create thin-layer composites with the introduction of nanocrystalline silicon among homogeneous layers. The measure of microhardness has shown that the microhardness of the composites after pressing under high pressure is in 2.5 times (Al – Si) and in 6 times (Ti – Si) more than the microhardness of the materials in the initial state. The study of the composite structure has showed (according to the received fracture pictures) that the composites are plastic. The increase of composites microhardness is observed at the preservation of an optimal level of the practical properties. The obtained nanocrystalline composites can be recommended as thin-layer very hard coatings on narrow or tensed areas of billets, as well as for the corrosion protection of local sites of the items.

About the Authors

N. I. Noskova
Institute of Metal Physics UB RAS (IMP UB RAS), Ekaterinburg, Russia
Russian Federation
Dr. Sci. (Phys.-Math.), Professor, Chief Researcher


R. V. Churbaev
Institute of Metal Physics UB RAS (IMP UB RAS), Ekaterinburg, Russia
Russian Federation
Cand. Sci. (Phys.-Math.), Senior Researcher


Yu. I. Filippov
Institute of Metal Physics UB RAS (IMP UB RAS), Ekaterinburg, Russia
Russian Federation
Chief Specialist


References

1. Noskova N.I., Mulyukov R.R. Submikrokristallicheskie i nanokristallicheskie metally i splavy [Submicrocrystalline and nanocrystalline metals and alloys]. Ekaterinburg: UrO RAN, 2003, 279 p. (In Russ.).

2. Andrievskii R.A. Nanostructural materials – developments and opportunities. Perspektivnye materialy. 2001, no. 6, pp. 5–11. (In Russ.).

3. Valiev R.Z., Vergazov A.N., Gertsman V.Yu. Kristallogeometricheskii analiz mezhkristallitnykh granits v praktike elektronnoi mikroskopii [Crystalgeometrical analysis of intercrystalline boarders in the practice of electron microscopy]. Moscow: Nauka, 1991, 230 p. (In Russ.).

4. Valiev R.Z. Nanokristallicheskie materialy, poluchaemye intensivnoi plasticheskoi deformatsiei [Nanocrystalline materilas, received by the intensive plastic deformation]. Moscow: Logos, 2000, 271 p. (In Russ.).

5. Modern composite materials. Lawrence J. Broutman, R.H. Krock eds. Addison Wesley, Reading, MA, 1967, 581 p. (Russ.ed.: Sovremennye kompozitsionnye materialy. Mir, 1970. 672 p.).

6. Gurevich Yu.G., Antsiferov V.N., Savinykh L.M., Oglezneva S.A., Bulanov V.Ya. Iznosostoikie kompozitsionnye materialy [Wearproof composite materials]. Ekaterinburg: UrO RAN, 2005, 216 p. (In Russ.).

7. Kuznetsov E.I., Chukin M.V., Baryshnikov M.P., Semenova O.V. Sloistye kompozitsionnye pokrytiya v metiznoi promyshlennosti [Laminated composite coatings in a hardware industry]. Magnitogorsk: PMP “Mini Tip”, 1997, 96 p. (In Russ.).

8. Kompozitsionnye materialy: Spravochnik [Composite materials: Reference-book]. Vasil’ev V.V., Tarnopol’skii Yu.M. eds. Moscow: Mashinostroenie, 1990, 512 p. (In Russ.).

9. Antsiferov V.N., Sirotenko L.D., Khanov A.M., Yakovlev I.V. Kompozitsionnye materialy i konstruktsii na osnove titana i ego soedinenii [Composite materials and constructions based on titanium and its compounds]. Novosibirsk: SO RAN, 2001, 369 p. (In Russ.).

10. Nanokompozity: issledovanie, proizvodstvo i primenenie [Nanocomposite: re-search, production and usage]. Berlin A.A., Assovskii I.G. eds. Moscow: Torus Pressa, 2004, 224 p. (In Russ.).

11. Zemnukhova L.A., Fedorishcheva G.A., Egorov A.G., Sergienko V.I. Recovery conditions, impurity composition, and characteristics of amorphous silicon dioxide from wastes formed in rice production. Russian Journal of Applied Chemistry. 2005, vol. 78, no. 2, pp. 319–323.

12. Zemnukhova L.A., Egorov A.G., Fedorishcheva G.A., Barinov N.N., Sokol’nitskaya T.A., Botsul A.I. Properties of amorphous silica produced from rice and oat processing waste. Inorgamic Materials. 2006, vol. 42, no. 1, pp. 24–29.

13. Bochkarev E.P., Kalantaryan S.Sh. Production of polycrystalline silicon with the low content of micromixtures. Tsvetnye metally. 1991, no. 11, pp. 38–40. (In Russ.).

14. Noskova N.I. The Nanocrystalline Alloys: The Structure and Properties. In: Nanostructured Materials: Science and Technology. G.-M. Chow and N.I. Noskova eds. 1998, NATO ASI Series, vol. 50, pp. 93–119.

15. Andrievskii R.A., Vikhrev A.N., Ivanov V.V., Kuznetsov R.I., Noskova N.I., Sazonova V.A. Magnetic-pulse and high-pressure shearstrain compaction of nanocrystalline titanium nitride. Physics of Metals and Metallography. 1996, vol. 81, no. 1, pp. 92–97.


Review

For citations:


Noskova N.I., Churbaev R.V., Filippov Yu.I. NANOCRYSTALLINE THIN-LAYER COMPOSITE COATINGS: PRODUCTION, STRUCTURE AND PROPERTIES. Izvestiya. Ferrous Metallurgy. 2016;59(4):264-270. (In Russ.) https://doi.org/10.17073/0368-0797-2016-4-264-270

Views: 661


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)