INFLUENCE OF EQUAL-CHANNEL ANGULAR PRESSING ON GRAIN REFINEMENTAND INELASTIC PROPERTIES OF TiNi-BASED ALLOYS
https://doi.org/10.17073/0368-0797-2014-12-50-55
Abstract
The review of regularities and possible mechanisms of grain refinement in TiNi-based alloys under the equal-channel angular pressing (ECAP) on the basis of the experimental results and liter-ary data is presented. The dependence of grain size on the accumulated true deformation in the framework of the continuous dynamic recrystallization model is considered. The results of experimental researches of ECAP effect on functional properties of TiNibased alloys are presented. The microstructure evolution of Ti50Ni47.3Fe2.7alloy with increasing number of ECAP passes affects nonmonotonically on mechanical properties, the regularities of accumulation and the recovery of inelastic deformation and the development of plastic deformation under isothermal loading unloading cycles and the shape recovery during heating predeformed samples. It is shown that the maximum of hardening achieved after the formation of ultrafine grain structure in samples of this alloy during the first pass of ECAP correlates with the maximum (5 %) of superelasticity at 295 K.
About the Authors
A. I. LotkovRussian Federation
Dr. Sci. (Phys.-math.), Professor, Deputy Director for Research
A. A. Baturin
Russian Federation
Cand. Sci. (Phys.-math.), Assist. Professor, Senior Researcher
V. N. Grishkov
Russian Federation
Cand. Sci. (Phys.-math.), Assist. Professor, Leading Researcher
V. I. Kopylov
Belarus
Cand. Sci. (Eng.), Assist Professor, Leading Researcher
V. N. Timkin
Russian Federation
Cand. Sci. (Eng.), Researcher
References
1. Valiev R.Z., Raab G.I., Botkin A.V., Dubinina S.V. Obtaining of ultra-fine-grained metals and alloys by the methods of intensive plastic deformation. New approaches in engineering. Izvestiya VUZov. Chernay metallurgiya = Izvestiya – Ferrous Metallurgy. 2012, no. 8, pp. 44–47. (In Russ.).
2. Yamada K., Koch C.C. The influence of mill energy and temperature on the structure of the TiNi intermetallic after mechanical attrition. J. Mater. Res. 1993, Vol. 8, pp. 1317–1326.
3. Huang J.Y., Zhu Y.T., Liao X.Z., Valiev R.Z. Amorphization of TiNi induced by high-pressure torsion. Phil. Mag. Letters. 2004, Vol. 84, pp. 183–190.
4. Rentenberger C., Mangler C., Scheriau S., Pippan R., Karnthaler H.P. TEM study of local disordering: a structural phase change induced by high-pressure torsion. Mater. Sci. Forum. 2008, Vol. 584–586, pp. 422–427.
5. Segal V.M., Reznikov V.I., Kopylov V.I., Pavlik D.A., Malyshev V.F. Protsessy plasticheskogo strukturoobrazovaniya metallov [Processes of plastic metal structure formation]. Minsk: Nauka i tekhnika, 1994. 232 p. (In Russ.).
6. Segal V.M., Reznikov V.I., Drobyshevskii A.E., Kopylov V.I. Plastic metal working by simple shear. Izvestiya. AN SSSR. Metally. 1981, no. 1, pp. 115–123. (In Russ.).
7. Zhu Y.Th., Lowe T.C. Observations and issues on mechanisms of grain refinement during ECAP process. Mat. Sci. Eng. A. 2000, Vol. 291, pp. 46–53.
8. Valiev R.Z., Pushin V.G. Bulk nanostructured metallic materials: production, structure, properties, and functioning. The Physics of Metals and Metallography. 2002, Vol. 94,.Suppl. 1, pp. 1–3.
9. Li Z., Xiang G., Cheng X. Effects of ECAE process on microstructure and transformation behavior of TiNi shape memory alloy. Materials and Design. 2006, Vol. 27, pp. 324–328.
10. Khmelevskaya I.Yu., Prokoshkin S.D., Trubitsyna I.B., Belousov M.N., Dobatkin S.V., Tatyanin E.V., Korotitskii A.V., Brailovski V., Stolyarov V.V., Prokof’ev E.A. Structure and properties of Ti – Ni-based alloys after equal-channel angular pressing and high-pressure torsion. Mat. Sci. Eng. 2008. A, Vol. 481–482, pp. 119–122.
11. Zhang X., Song J., Huang C., Xia B., Chen B., Sun X., Xie C. Microstructures evolution and phase transformation behaviors of Ni-rich TiNi shape memory alloys after equal channel angular extrusion. J. Alloys Compd. 2011. doi.org/10.1016/j.jallcom.2010.11.189.
12. Stolyarov V.V., Prokof’ev E.A., Prokoshkin S.D., Dobatkin S.V., Trubitsyna I.B., Khmelevskaya I.Yu., Pushin V.G., Valiev R.Z. Structural features, mechanical properties, and the shape-memory effect in TiNi alloys subjected to equal-channel angular pressing. Physics of Metals and Metallography. 2005, Vol. 100, no. 6, pp. 608–618.
13. Fan Z., Xie C. Recrystallization characteristics of Ti – 50.9 at. % Ni alloy processed by equal channel angular extrusion. Adv. Mater. Res. 2007, Vol. 26–28, pp. 385–388.
14. Lotkov A.I., Baturin A.A., Grishkov V.N., Kopylov V.I. Possible role of crystal structure defects in grain structure nanofragmentation under severe cold plastic deformation of metals and alloys. Physical Mesomechanics. 2007, Vol. 10, no. 3–4, pp. 179–189.
15. Prokoshkin S.D., Belousov M.N., Abramov V.Ya., Makushev S.Yu., Khmelevskaya I.Yu., Dobatkin S.V., Stolyarov V.V., Prokof’ev E.A., Zharikov A.I., Valiev R.Z. Creation of submicrocrystalline structure and improvement of functional properties of shape memory alloys of the Ti–Ni–Fe system with the help of ECAP. Metal Science and Heat Treatment. 2007, no. 1–2. pp. 51–56.
16. Bondar’ M.P., Psakhie S.G., Dmitriev A.I., Nikonov A.Yu. On the conditions of strain localization and microstructure fragmentation under high-rate loading. Physical Mesomechanics. 2013, Vol. 16, no. 3, pp. 191–199.
17. Tyumentsev A.N., Ditenberg I.A., Korotaev A.D., Denisov K.I. Lattice curvature evolution in metal materials on meso- and nanostructural scales of plastic deformation. Physical Mesomechanics. 2013, Vol. 16, no. 4, pp. 319–334.
18. Hallberg H., Wallin M., Ristinmaa M. Modeling of Continuous Dynamic Recrystallization in Commercial-Purity Aluminum. Mater. Sci. Eng. A. 2010, Vol. 572, pp. 1126–1134.
19.
Review
For citations:
Lotkov A.I., Baturin A.A., Grishkov V.N., Kopylov V.I., Timkin V.N. INFLUENCE OF EQUAL-CHANNEL ANGULAR PRESSING ON GRAIN REFINEMENTAND INELASTIC PROPERTIES OF TiNi-BASED ALLOYS. Izvestiya. Ferrous Metallurgy. 2014;57(12):50-55. (In Russ.) https://doi.org/10.17073/0368-0797-2014-12-50-55