Preview

Izvestiya. Ferrous Metallurgy

Advanced search

INFLUENCE OF EQUAL-CHANNEL ANGULAR PRESSING ON GRAIN REFINEMENTAND INELASTIC PROPERTIES OF TiNi-BASED ALLOYS

https://doi.org/10.17073/0368-0797-2014-12-50-55

Abstract

The review of regularities and possible mechanisms of grain refinement  in TiNi-based  alloys  under  the  equal-channel  angular pressing (ECAP) on the basis of the experimental results and liter-ary data is presented. The dependence of grain size on the accumulated true deformation in the framework of the continuous dynamic recrystallization model  is considered. The  results of  experimental researches of ECAP effect on functional properties of TiNibased alloys are presented. The microstructure evolution of Ti50Ni47.3Fe2.7alloy  with  increasing  number  of  ECAP  passes  affects  nonmonotonically on mechanical properties, the regularities of accumulation and the recovery of inelastic deformation and the development of plastic deformation under isothermal loading  unloading cycles and the shape recovery during heating predeformed samples. It is shown that the maximum of hardening achieved after the formation of ultrafine grain structure in samples of this alloy during the first pass of ECAP correlates with the maximum (5  %) of superelasticity at 295 K. 

About the Authors

A. I. Lotkov
Institute of Strength Physics and Material Science Siberian Brunch of Russian Academy of Sciences (2/4,Akademicheskii pr., Tomsk, 634021, Russia)
Russian Federation
Dr. Sci. (Phys.-math.), Professor, Deputy Director for Research


A. A. Baturin
Institute of Strength Physics and Material Science Siberian Brunch of Russian Academy of Sciences (2/4,Akademicheskii pr., Tomsk, 634021, Russia) National Research Tomsk Polytechnic University (Tomsk, Russia)(30, Lenina pr., Tomsk, 634036, Russia)
Russian Federation
Cand. Sci. (Phys.-math.), Assist. Professor, Senior Researcher


V. N. Grishkov
Institute of Strength Physics and Material Science Siberian Brunch of Russian Academy of Sciences (2/4,Akademicheskii pr., Tomsk, 634021, Russia)
Russian Federation
Cand. Sci. (Phys.-math.), Assist. Professor, Leading Researcher


V. I. Kopylov
Physical-Technical Institute of National Academy of Sciences of Belarus (10, Kuprevicha str., Minsk, 220141, Belarus)
Belarus

Cand. Sci. (Eng.), Assist Professor, Leading Researcher



V. N. Timkin
Institute of Strength Physics and Material Science Siberian Brunch of Russian Academy of Sciences (2/4,Akademicheskii pr., Tomsk, 634021, Russia)
Russian Federation
Cand. Sci. (Eng.), Researcher


References

1. Valiev R.Z., Raab G.I., Botkin A.V., Dubinina  S.V. Obtaining  of ultra-fine-grained  metals  and  alloys  by  the  methods  of  intensive plastic  deformation.  New  approaches  in  engineering.  Izvestiya VUZov. Chernay metallurgiya = Izvestiya – Ferrous Metallurgy. 2012, no. 8, pp. 44–47. (In Russ.). 

2. Yamada K., Koch C.C. The influence of mill energy and temperature on the structure of the TiNi intermetallic after mechanical attrition. J. Mater. Res. 1993, Vol. 8, pp. 1317–1326.

3. Huang J.Y., Zhu Y.T., Liao X.Z., Valiev R.Z. Amorphization of TiNi induced by high-pressure torsion. Phil. Mag. Letters. 2004, Vol. 84, pp. 183–190. 

4. Rentenberger C., Mangler C., Scheriau S., Pippan R., Karnthaler  H.P. TEM  study of  local disordering: a  structural phase change  induced by  high-pressure  torsion.  Mater. Sci. Forum.  2008,  Vol.  584–586, pp.  422–427.

5. Segal  V.M.,  Reznikov  V.I.,  Kopylov  V.I.,  Pavlik  D.A.,  Malyshev  V.F. Protsessy plasticheskogo strukturoobrazovaniya metallov [Processes  of  plastic metal  structure  formation]. Minsk: Nauka  i tekhnika, 1994. 232 p. (In Russ.). 

6. Segal V.M., Reznikov V.I., Drobyshevskii A.E., Kopylov V.I. Plastic metal  working  by  simple  shear.  Izvestiya. AN SSSR. Metally. 1981, no. 1, pp. 115–123. (In Russ.).

7. Zhu Y.Th., Lowe T.C. Observations and  issues on mechanisms of grain  refinement  during  ECAP  process. Mat. Sci. Eng. A.  2000, Vol.  291, pp. 46–53.

8. Valiev R.Z.,  Pushin V.G. Bulk  nanostructured metallic materials: production,  structure,  properties,  and  functioning.  The Physics of Metals and Metallography. 2002, Vol. 94,.Suppl. 1, pp. 1–3.

9. Li Z., Xiang G., Cheng X. Effects of ECAE process on microstructure and transformation behavior of TiNi shape memory alloy. Materials and Design. 2006, Vol. 27, pp. 324–328.

10. Khmelevskaya  I.Yu.,  Prokoshkin  S.D.,  Trubitsyna  I.B.,  Belousov  M.N.,  Dobatkin  S.V.,  Tatyanin  E.V.,  Korotitskii A.V.,  Brailovski V.,  Stolyarov V.V.,  Prokof’ev  E.A.  Structure  and  properties  of Ti – Ni-based  alloys  after  equal-channel  angular  pressing and high-pressure  torsion. Mat. Sci. Eng. 2008. A, Vol. 481–482, pp.  119–122.

11. Zhang X., Song J., Huang C., Xia B., Chen B., Sun X., Xie C. Microstructures evolution and phase transformation behaviors of Ni-rich TiNi  shape memory  alloys  after  equal  channel  angular  extrusion. J. Alloys Compd. 2011. doi.org/10.1016/j.jallcom.2010.11.189. 

12. Stolyarov V.V.,  Prokof’ev E.A.,  Prokoshkin  S.D., Dobatkin  S.V., Trubitsyna  I.B.,  Khmelevskaya  I.Yu.,  Pushin  V.G.,  Valiev  R.Z. Structural  features, mechanical  properties,  and  the  shape-memory effect  in  TiNi  alloys  subjected  to  equal-channel  angular  pressing. Physics of Metals and Metallography. 2005, Vol. 100, no. 6, pp.  608–618.

13. Fan Z., Xie C. Recrystallization characteristics of Ti – 50.9 at. %  Ni alloy processed by equal channel angular extrusion. Adv. Mater. Res. 2007, Vol. 26–28, pp. 385–388.

14. Lotkov A.I., Baturin A.A., Grishkov V.N., Kopylov V.I. Possible role of crystal structure defects in grain structure nanofragmentation under severe cold plastic deformation of metals and alloys. Physical Mesomechanics. 2007, Vol. 10, no. 3–4, pp. 179–189.

15. Prokoshkin S.D., Belousov M.N., Abramov V.Ya., Makushev S.Yu., Khmelevskaya I.Yu., Dobatkin S.V., Stolyarov V.V., Prokof’ev  E.A., Zharikov A.I., Valiev R.Z. Creation of submicrocrystalline structure and  improvement of functional properties of shape memory alloys of the Ti–Ni–Fe system with the help of ECAP. Metal Science and Heat Treatment. 2007, no. 1–2. pp. 51–56.

16. Bondar’ M.P., Psakhie S.G., Dmitriev A.I., Nikonov A.Yu. On  the conditions  of  strain  localization  and microstructure  fragmentation under  high-rate  loading. Physical Mesomechanics.  2013, Vol.  16, no. 3, pp. 191–199.

17. Tyumentsev A.N., Ditenberg I.A., Korotaev A.D., Denisov K.I. Lattice curvature evolution in metal materials on meso- and nanostructural scales of plastic deformation. Physical Mesomechanics. 2013, Vol.  16, no. 4, pp. 319–334.

18. Hallberg H., Wallin M., Ristinmaa M. Modeling of Continuous Dynamic  Recrystallization  in  Commercial-Purity Aluminum. Mater. Sci. Eng. A. 2010, Vol. 572, pp. 1126–1134.

19.


Review

For citations:


Lotkov A.I., Baturin A.A., Grishkov V.N., Kopylov V.I., Timkin V.N. INFLUENCE OF EQUAL-CHANNEL ANGULAR PRESSING ON GRAIN REFINEMENTAND INELASTIC PROPERTIES OF TiNi-BASED ALLOYS. Izvestiya. Ferrous Metallurgy. 2014;57(12):50-55. (In Russ.) https://doi.org/10.17073/0368-0797-2014-12-50-55

Views: 598


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)