THE JOINT SYNTHESIS OF THE CONTROLLED OBJECT AND CONTROL SUBSYSTEM
https://doi.org/10.17073/0368-0797-2014-12-33-36
Abstract
This article proposes a new approach to building control systems, consisting in the joint synthesis of the controlled object and the control subsystem. The authors made the formulation of such a synthesis based on a set of object models and control algorithms with the formation of allowable combinations “model of object control algorithm”. The effective solving of the problem by simulation of natural and mathematical modeling was proposed. The article shows the examples of synthesis of control systems of steel melting in basic oxygen furnace (steel melting control system in basic oxygen converter). The authors identified the need to expand models for steel melting by including factors affecting the parameters of the converter during oxygen blowing. The technical and economic performances of various control systems were received. It is shown that the system “The combined model of the object with the op-erational settings of the сonverter caracteristics the combined control algorithm” has the best technical and economic indicators.
About the Authors
M. V. LyakhovetsRussian Federation
Cand. Sci. (Eng.), Assist. Professor
K. A. Ivushkin
Russian Federation
Cand. Sci. (Economics), First Deputy Director
L. P. Myshlyaev
Russian Federation
Dr. Sci. (Eng.), Professor
S. V. Chernyavskii
Russian Federation
Senior Researcher
L. I. L’vova
Russian Federation
Dr. Sci. (Eng.), Professor
References
1. Myshlyaev L.P., Shchelokov A.E., Evtushenko V.F. Biblioteka sbornika “Matematicheskie i ekonomicheskie modeli v operativnom upravlenii proizvodstvom” [Library collection “Mathematical and economic models in the operational management of production”]. Issue 4. Moscow: Elektrika. 2000. 49 p. (In Russ.).
2. Myshlyaev L.P., Ivushkin K.A., Grachev V.V., Shipunov M.V. The combined simulation modeling – the basis of the problem decision of automated system development. Vestnik Sibirskogo gosudarstvennogo industrial’nogo universiteta. 2012, no. 2, pp. 35–40. (In Russ.).
3. Bigeev A.M. Matematicheskoe opisanie i raschety staleplavil’nykh protsessov [Mathematical description and calculations of steelmaking processes]. Moscow: Metallurgiya, 1982. 160 p. (In Russ.).
4. Tsymbal V.P. Matematicheskoe modelirovanie slozhnykh sistem v metallurgii [Mathematical modeling of complex systems in metallurgy]. Kemerovo: Kuzbassvuzizdat-ASTSh; Moscow: Rossiiskie universitety, 2006. 431p. (In Russ.).
5. Jyalkanen H. Experiences in physicochemical modelling of oxygen converter process (BOF). Sohn International Symposium; Advanced Processing of Metals and Materials. Vol. 2: Thermo and Physicochemical Principles: Iron and Steel Making. 2006. Vol. 2, pp. 541–554.
6. Litvinyuk Y., Schenk J., Hiebler M., Sormann A. Thermodynamic and Kinetic Model of the Converter Steelmaking Process. Part 1: The Description of the BOF Model. Steel research international. 2014. Vol. 85(4), pp. 537–543.
7. Kolpakov S.V., Teder L.I., Dubrovskii S.A. Upravlenie konverternoi plavkoi [Control of the сonverter process]. Moscow: Metallurgiya, 1981. 144 p. (In Russ.).
8. Sokolov B.M., Shepelyavyi A.I., Medvedev A.V. Adaptive control of the сonverter melting of steel. Vestnik Sankt-Peterburgskogo universiteta. Seriya 1: Matematika. Mekhanika. Astronomiya. 2003, no. 2. pp. 58–65. (In Russ.).
9. Bogushevskii V.S., SukhenkoV.Yu., Sergeeva E.A. A mathematical model of the control of the blowing mode of converter smelting. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya – Ferrous Metallurgy. 2011, no. 8, pp. 24–27.(In Russ.).
10. Hideaki S., Ryo I. Thermodynamic Assessment of Hot Metal and Steel Dephosphorization with MnO-containing BOF Slags. ISIJ International.1995. Vol. 35(3), pp. 258-265.
11. Brooks G.A., Dogan N., Alam M., Naser J., Rhamdhani M.A. Developments in the modelling of oxygen steelmaking. Guthrie Symposium Montreal. McGill University. 2011.
12. Dogan N., Brooks G.A., Rhamdhani M.A. Comprehensive model of oxygen steelmaking. Part 1: model development and validation. ISIJ international. 2011. Vol. 51(7), pp. 1086–1092.
13. Avdeev V.P., Aizatulov R.S., Myshlyaev L.P., Petrunin M.V., Sarapulov Yu.A. Sposoby rascheta mass materialov konverternogo proizvodstva [Methods of material mass calculating of converter production]. Moscow: Metallurgiya, 1994. 192 p. (In Russ.).
14. Turkenich D.I. Upravlenie plavkoi stali v konvertore [Control of steel melting in the converter]. Moscow: Metallurgiya, 1976. 292 p. (In Russ.).
15. Glinkov G.M., Makovskii V.A. ASUTP v chernoi metallurgii [APCS in ferrous metallurgy]. Moscow: Metallurgiya, 1999. 310 p. (In Russ.).
16. Han M., Zhao Y. Dynamic control model of BOF steelmaking process based on ANFIS and robust relevance vector machine. Expert Systems with Applications. 2011. Vol. 38(12), pp. 14786–14798.
17. Koshelev A.E., Solov’ev V.I., Aizatulov R.S., Petrunin M.V., Avdeev V.P. Experience of adapting control systems of technological processes. Pribory i sistemy upravleniya. 1977, no. 1, pp. 9–11. (In Russ.)
18. Jun T., Xin W., Tianyou C., Shuming X. Intelligent control method and application for BOF steelmaking process. World Congress. 2002. Vol. 15(1), pp. 724–724.
19. Volovich M.I., Avdeev V.P., Gerasimenko I.P., Protopopov E.V. Kombinirovannoe upravlenie konverternoi plavkoi [Combined control of the converter smelting]. Kemerovo: Kn. Izd-vo, 1990. 142 p. (In Russ.).
20.
Review
For citations:
Lyakhovets M.V., Ivushkin K.A., Myshlyaev L.P., Chernyavskii S.V., L’vova L.I. THE JOINT SYNTHESIS OF THE CONTROLLED OBJECT AND CONTROL SUBSYSTEM. Izvestiya. Ferrous Metallurgy. 2014;57(12):33-36. (In Russ.) https://doi.org/10.17073/0368-0797-2014-12-33-36