Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Mathematical model of blast furnace hearth condition based on data from thermocouples in refrigerator belts

https://doi.org/10.17073/0368-0797-2025-3-316-323

Abstract

The control of blast furnace hearth lining is of critical importance in ensuring efficient and safe operation of blast furnace production process. Hearth lining plays a fundamental role in protecting the blast furnace walls from high temperatures and chemically aggressive slag melt. Early detection of high wear areas allows planning of preventive maintenance, thereby minimizing downtime and lost productivity. Furthermore, it contributes to the efficient use of resources by optimizing the replacement of damaged lining sections, thus avoiding unnecessary expenditure on preventive measures. The paper presents a three-dimensional unsteady model of blast furnace hearth, developed based on thermocouple data. This model facilitates estimation of the crucible heat-up and temperature distribution in the crucible masonry in three-dimensional and two-dimensional (graphical) forms. Estimation of the hearth lining burnout is achieved through the utilization of readings of the thermocouples installed in the hearth lining of blast furnace in the area encompassing the three lower refrigerator belts. Implementation of the mathematical model is permissible at any juncture following the overhaul of the first discharge. If a sufficient amount of time passed since the blast furnace was blown in, and there is a possibility of burnout or skull formation in the hearth lining, it is also necessary to utilize the results of ultrasonic control (USC) of the blast furnace lower part. The mathematical model of the blast furnace hearth condition enables informed decision-making by users regarding prevention of the emergency situations related to lining burnout, thus demonstrating its potential as a tool for enhancing the efficiency and safe operation of blast furnaces.

About the Authors

A. N. Dmitriev
Institute of Metallurgy named after Academician N.A. Vatolin, Ural Branch of the Russian Academy of Sciences
Russian Federation

Andrei N. Dmitriev, Dr. Sci. (Eng.), Prof., Chief Researcher of the Laboratory of Pyrometallurgy of Reduction Processes

101 Amund­sena Str., Yekaterinburg 620016, Russian Federation



D. A. Vit’kin
JSC Kalugin
Russian Federation

Dmitrii A. Vit’kin, Design Engineer

33 Mira Str., Yekaterinburg 620078, Russian Federation



M. O. Zolotykh
Institute of Metallurgy named after Academician N.A. Vatolin, Ural Branch of the Russian Academy of Sciences
Russian Federation

Maksim O. Zolotykh, Cand. Sci. (Eng.), Leading Engineer of Laboratory for Pyrometallurgy of Reduction Processes

101 Amund­sena Str., Yekaterinburg 620016, Russian Federation



G. Yu. Vit’kina
Institute of Metallurgy named after Academician N.A. Vatolin, Ural Branch of the Russian Academy of Sciences
Russian Federation

Galina Yu. Vit’kina, Cand. Sci. (Eng.), Leading Researcher, Head of the Laboratory of Pyrometallurgy of Reduction Processes

101 Amund­sena Str., Yekaterinburg 620016, Russian Federation



References

1. Chaika A.L., Lebed’ V.V., Sokhatskii A.A., Tsyupa K.S., Kornilov B.V., Shostak V.Yu., Panchokha G.V., Moskalina A.A., Goman S.V., Fomenko A.P. Experience and prospects of complex application of automated control systems for lining burnout, heat losses and heat energy parameters at blast furnaces. Metallurgicheskaya i gornorudnaya promyshlennost'. 2017;(3):2–9. (In Russ.).

2. Pinchuk D.A., Panchokha G.V., Kanaev V.V., Mozharenko N.M. Modern methods of control of residual thickness of the lining of the blast furnace metal receiver. In: Proceedings of the “Fundamental and Applied Problems of Ferrous Metallurgy”. 2005;(11):247–253. (In Russ.).

3. Filatov S.V., Kurunov I.F., Gordon Ya.M., Tikhonov D.N., Grachev S.N. Extension of blast furnace campaign at its intensive operation. Metallurg. 2016;(9):17–22. (In Russ.).

4. Tarakanov A.K., Ivashchenko V.P., Eremin O.O., Sibir A.V., Lyalyuk V.P., Kassim D.A. Control of condition of lining in blast furnace metal receiver. Metallurgicheskaya i gornorudnaya promyshlennost'. 2016;(2):32–38. (In Russ.).

5. Murav’eva I.G., Togobitskaya D.N., Beloshapka E.A., Shumel’chik E.I., Semenov Yu.S. Development of complex criterion for assessment of melts impact on lining in blast furnace metal receiver. In: Proceedings of the “System Technologies”. 2012;(2):79. (In Russ.).

6. Jiao K.-x., Zhang J.-l., Liu Z.-j., Deng Y., Chen C.-l. Cooling phenomena in blast furnace hearth. Journal of Iron and Steel Research International. 2018;25:1010–1016. https://doi.org/10.1007/s42243-018-0160-x

7. Andreev K., Louwerse G., Peeters T., van der Stel J. Blast furnace campaign extension by fundamental understanding of hearth processes. Ironmaking & Steelmaking. 2017;44(2): 81–91. https://doi.org/10.1080/03019233.2016.1154716

8. Liu Z Recent progress on long service life design of Chinese blast furnace hearth. ISIJ International. 2012;52(101): 1713–1723. https://doi.org/10.2355/isijinternational.52.1713

9. Li Y., Chen L., Wang L., Ma J. Monitoring the safety status of a blast furnace hearth using cooling stave heat flux. AIP Advances. 2020;10(2):025308. https://doi.org/10.1063/1.5137827

10. Dmitriev A.N., Chesnokov Yu.A., Chen K., Ivanov O.Yu., Zolotykh M.O. Monitoring system of firebrick lining erosion of blast furnace hearth. IFAC Proceedings Volumes. 2013;46(16):294–301. https://doi.org/10.3182/20130825-4-US-2038.00027

11. Dmitriev A.N., Zolotykh M.O., Vit’kina G.Yu. Monitoring of Condition of Refractory Lining of Blast Furnace Hearth by Digital Technologies. Yekaterinburg: AMB; 2022:154. (In Russ.).

12. Koshelev A.E., Krivolapova L.I., Kravtsova O.A. Method of control of blast furnace hearth lining condition. Pat. 2299910 RU. Applied 07.07.2005; Publ. 27.05.2007. (In Russ.).

13. Torrkulla J., Saxén H. Model of the state of the blast furnace hearth. ISIJ International. 2000;40(5):438–447. https://doi.org/10.2355/isijinternational.40.438

14. Duarte R.M., Ruiz-Bustinza I., Carrascal D., Verdeja L.F., Mochón J., Cores A. Monitoring and control of hearth refractory wear to improve blast furnace operation. Ironmaking & Steelmaking. 2013;40(5):350–359. https://doi.org/10.1179/1743281212Y.0000000045

15. Swartling M., Sundelin B., Tilliander A., Jönsson P.G. Heat transfer modelling of a blast furnace hearth. Steel Research International. 2010;81(3):186–196. https://doi.org/10.1002/srin.200900145

16. Swartling M. A study of the heat flow in the blast furnace hearth lining: Doctoral dissertation. 2010:51.

17. Li Y., Chen L., Ma J. Numerical study on the relationship between the localized depression erosion of a commercial blast furnace hearth lining and the heat flux of cooling staves. IEEE Access. 2019;(7):60984–60994. https://doi.org/10.1109/ACCESS.2019.2915915

18. Swartling M., Sundelin B., Tilliander A., Jönsson P. Experimentally determined temperatures in blast furnace hearth. Ironmaking & Steelmaking. 2010;37(1):21–26. https://doi.org/10.1179/030192309X12506804200627

19. Zhao H., Cheng S. Optimization for the structure of BF hearth bottom and the arrangement of thermal couples. Journal of University of Science and Technology Beijing, Mine­ral, Metallurgy, Material. 2006;13(6):497–503. https://doi.org/10.1016/S1005-8850(06)60101-1

20. Zhang C., Hou B., Shao L., Zou Z., Saxén H. Estimation of the blast furnace hearth state using an inverse-problem-based wear model. Metals. 2022;12(8):1302. https://doi.org/10.3390/met12081302

21. Dmitriev A.N., Zolotykh M.O., Chen K., Vit’kina G.Yu. Comparative technological analysis of control systems of refractory lining heat-up of blast furnace hearth. Ferrous Metallurgy. Bulletin of Scientific, Technical and Economic Information. 2018;(8):82–91. (In Russ.).

22. Moroz V.F., Togobitskaya D.N., Mozharenko N.M., Neste­rov A.S., Bel’kova A.I., Stepanenko D.A. Influence of composition and properties of skull materials on its formation and durability. In: Proceedings of the “Fundamental and Applied Problems of Ferrous Metallurgy”. 2010;22:85–95. (In Russ.).


Review

For citations:


Dmitriev A.N., Vit’kin D.A., Zolotykh M.O., Vit’kina G.Yu. Mathematical model of blast furnace hearth condition based on data from thermocouples in refrigerator belts. Izvestiya. Ferrous Metallurgy. 2025;68(3):316-323. (In Russ.) https://doi.org/10.17073/0368-0797-2025-3-316-323

Views: 23


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)