Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Energy and velocity of sliding of edge and screw dislocations in austenite and Hadfield steel: Molecular dynamics simulation

https://doi.org/10.17073/0368-0797-2022-12-861-868

Abstract

The sliding of edge and screw dislocations in Hadfield steel and in pure HCC iron (austenite) depending on temperature and deformation rate was studied by the method of molecular dynamics. The complete dislocation appears in the present model immediately in the form of a split into a pair of partial Shockley dislocations separated by a packing defect. The distance between partial dislocations is several nanometres. As the shear rate increases, this distance decreases. According to the data obtained, the energies of edge and screw dislocations in steel are higher than in pure austenite. The energy of the total edge dislocation in γ-iron and Hadfield steel averages 2.0 and 2.3 eV/Å, helical – 1.3 and 1.5 eV/Å respectively. Dependences of the sliding velocity of the edge and screw dislocations on the shear rate and temperature were obtained. The sliding velocity of the edge dislocation is in all cases higher than the screw one, which is explained by the difference in the propagation velocity of longitudinal and transverse waves in the material. With an increase in the shear rate, the sliding speed increases to a certain limit, depending on the propagation velocity of the corresponding elastic waves. At low and normal temperatures, the sliding velocity of dislocations in Hadfield steel is significantly (about one and a half times) lower compared to pure HCC iron. In pure iron, the sliding velocity of dislocations decreases with increasing temperature. However, for Hadfield steel, this dependence is nonmonotonic: as the temperature increases to about 500 K, the dislocation rate increases. That is probably due to the intensification of diffusion of impurity carbon atoms; then, as in iron, it decreases.

About the Authors

I. V. Zorya
Siberian State Industrial University
Russian Federation

Irina V. Zorya, Cand. Sci. (Eng.), Assist. Prof., Head of the Chair of Heat-Gas-Water Supply, Water Disposal and Ventilation

42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007, Russian Federation



G. M. Poletaev
Polzunov Altai State Technical University
Russian Federation

Gennadii M. Poletaev, Dr. Sci. (Phys.-Math.), Prof., Head of the Chair of Advanced Mathematics and Mathematical Modeling

46 Lenina Ave., Barnaul, Altai Territory 656038, Russian Federation



R. Yu. Rakitin
Altai State University
Russian Federation

Roman Yu. Rakitin, Cand. Sci. (Phys.-Math.), Assist. Prof., Director of the College

100 Komsomol'skii Ave., Barnaul, Altai Territory 656038, Russian Federation



References

1. Chen C., Meng F., Ou P., Lan G., Li B., Chen H., Qiu Q., Song J. Effect of indium doping on motions of <a>-prismatic edge dislocations in wurtzite gallium nitride. Journal of Physics: Condensed Matter. 2019, vol. 31, no. 31, article 315701. https://doi.org/10.1088/1361-648X/ab1bf3

2. Olmsted D.L., Hector Jr. L.G., Curtin W.A., Clifton R.J. Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys. Modelling and Simulation in Materials Science and Engineering. 2005, vol. 13, no. 3, pp. 371–388. https://doi.org/10.1088/0965-0393/13/3/007

3. Zhao S., Osetsky Y.N., Zhang Y. Atomic-scale dynamics of edge dislocations in Ni and concentrated solid solution NiFe alloys. Journal of Alloys and Compounds. 2017, vol. 701, pp. 1003–1008. https://doi.org/10.1016/j.jallcom.2017.01.165

4. Rodney D., Ventelon L., Clouet E., Pizzagalli L., Willaime F. Ab initio modeling of dislocation core properties in metals and semiconductors. Acta Materialia. 2017, vol. 124, pp. 633–659. https://doi.org/10.1016/j.actamat.2016.09.049

5. Hunter A., Beyerlein I.J., Germann T.C., Koslowski M. Influence of the stacking fault energy surface on partial dislocations in fcc metals with a three-dimensional phase field dislocations dynamics model. Physical Review B. 2011, vol. 84, article 144108. https://doi.org/10.1103/PhysRevB.84.144108

6. Po G., Cui Y., Rivera D., Cereceda D., Swinburne T.D., Marian J., Ghoniem N. A phenomenological dislocation mobility law for bcc metals. Acta Materialia. 2016, vol. 119, pp. 123–135. https://doi.org/10.1016/j.actamat.2016.08.016

7. Friedel J. Dislocations. Pergamon, 1964, 512 p. (Russ. ed.: Friedel J. Dislokatsii. Moscow: Mir, 1967, 660 p.). https://doi.org/10.1016/C2013-0-02250-5

8. Hirth D., Lothe I. Theory of Dislocations. Oxford, 1972. (Russ. ed.: Hirth D., Lothe I. Teoriya dislokatsii. Moscow: Atomizdat, 1972, 600 p.).

9. Zhang F.C., Lv B., Wang T.S., Zheng C.L., Zhang M., Luo H.H., Liu H., Xu A.Y. Explosion hardening of Hadfield steel crossing. Materials Science and Technology. 2010, vol. 26, no. 2, pp. 223‒229. https://doi.org/10.1179/174328408X363263

10. Chen C., Lv B., Ma H., Sun D., Zhang F. Wear behavior and the corresponding work hardening characteristics of Hadfield steel. Tribo­logy International. 2018, vol. 121, pp. 389‒399. https://doi.org/10.1016/j.triboint.2018.01.044

11. Lau T.T., Forst C.J., Lin X., Gale J.D., Yip S., Van Vliet K.J. Many-body potential for point defect clusters in Fe-C alloys. Physical Review Letters. 2007, vol. 98, article 215501. https://doi.org/10.1103/PhysRevLett.98.215501

12. Oila A., Bull S.J. Atomistic simulation of Fe-C austenite. Computational Materials Science. 2009, vol. 45, no. 2, pp. 235‒239. https://doi.org/10.1016/j.commatsci.2008.09.013

13. Poletaev G.M., Rakitin R.Y. Molecular dynamics study of stress-strain curves for γ-Fe and Hadfield steel ideal crystals at shear along the <111> direction. Materials Physics and Mechanics. 2021, vol. 47, no. 2, pp. 237–244. https://doi.org/10.18149/MPM.4722021_6

14. Massardier V., Le Patezour E., Soler M., Merlin J. Mn-C interaction in Fe-C-Mn steels: study by thermoelectric power and internal friction. Metallurgical and Materials Transactions A. 2005, vol. 36, pp. 1745–1755. https://doi.org/10.1007/s11661-005-0039-x

15. Slane J.A., Wolverton C., Gibala R. Carbon–vacancy interactions in austenitic alloys. Materials Science and Engineering: A. 2004, vol. 370, no. 1-2, pp. 67–72. https://doi.org/10.1016/j.msea.2003.08.073

16. Poletaev G.M., Zorya I.V., Starostenkov M.D. Role of point defects in self-diffusion along low-angle twist boundaries in fcc metals: A molecular dynamics study. Journal of Micromechanics and Molecular Physics. 2018, vol. 3, no. 1&2, article 1850001. https://doi.org/10.1142/S2424913018500017

17. Poletaev G.M. Self-diffusion in liquid and solid alloys of the Ti–Al system: molecular-dynamics simulation. Journal of Experimental and Theoretical Physics. 2021, vol. 133, no. 4, pp. 455–460. https://doi.org/10.1134/S1063776121090041

18. Poletaev G.M., Starostenkov M.D. Dynamic collective displacements of atoms in metals and their role in the vacancy mechanism of diffusion. Physics of the Solid State. 2009, vol. 51, no. 4, pp. 727‒732. https://doi.org/10.1134/S106378340904012X

19. Cahn R.W., Haasen P. Physical Metallurgy. 4th ed. Amsterdam: North-Holland Physics Publishing, 1996, 2740 p.

20. Zhou X.W., Sills R.B., Ward D.K., Karnesky R.A. Atomistic calculations of dislocation core energy in aluminium. Physical Review B. 2017, vol. 95, article 054112. https://doi.org/10.1103/PhysRevB.95.054112

21. Veiga R.G.A., Goldenstein H., Perez M., Becquart C.S. Monte Carlo and molecular dynamics simulations of screw dislocation locking by Cottrell atmospheres in low carbon Fe-C alloys. Scripta Materialia. 2015, vol. 108, pp. 19–22. https://doi.org/10.1016/j.scriptamat.2015.06.012

22. Kar’kina L.E., Kar’kin I.N., Yakovleva I.L., Zubkova T.A. Computer simulation of carbon diffusion near b/2[010](001) dislocation in cementite. Physics of Metals and Metallography. 2013, vol. 114, no. 2, pp. 155–161. https://doi.org/10.1134/S0031918X13020099


Review

For citations:


Zorya I.V., Poletaev G.M., Rakitin R.Yu. Energy and velocity of sliding of edge and screw dislocations in austenite and Hadfield steel: Molecular dynamics simulation. Izvestiya. Ferrous Metallurgy. 2022;65(12):861-868. (In Russ.) https://doi.org/10.17073/0368-0797-2022-12-861-868

Views: 497


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)