Thermodynamics of alkaline-earth metals reduction from slag melts
https://doi.org/10.17073/0368-0797-2022-4-268-277
Abstract
Based on the state diagrams of two–component silicate systems SrO – SiO2 , BaO – SiO2 , CaO – SiO2 , the authors have determined the activity of components in invariant (eutectic and monotectic) points of the systems under consideration. Crystallization processes at invariant eutectic points l1 and l2 are considered as chemical reactions le1 (KSiO2 (l) + lMeO(l)) → CSiO2 (sol) + α(MeO·SiO2 )(sol), le2 (mSiO2 (l) + nMeO(l)) → (MeO·SiO2 )(sol) + b(2MeO·SiO2 )(sol), for which the values ΔG°T and the equilibrium constants were established. The values of aMeO in the slags were determined at given temperatures and known values of the component activities in metal melts in equilibrium with slag. In homogeneous slag melts, the activity of alkaline-earth metal (AEM) oxides was defined from the constants of equilibrium reactions of reduction of these metals from slags by silicon of iron-silicon metal melts. In the zone of homogeneous slag melts, the dependences aSiO2 = f (x(SiO2 )) were constructed at temperatures of 1600 and 1700 °C, and when using data on the activities of AEM (Sr, Ba, Ca) in metallic high-silicon melts, the dependences lga(SrO) = f (x(SiO2 ) , x(Si)) at 1493 °C and lga(BaO) = f (x(SiO2 ) , x(Si)) at 1450 °C were determined. On a three-parameter diagram in coordinates a[Si] – a(SiO2 ) – a(MeO) (for AEM), the dependencies a(SrO) = f (a[Si] , a(SiO2 ) ) at 1493 °C and a(BaO) = f (a[Si] , a(SiO2 ) ) at 1450 °C were constructed. It is shown that low equilibrium values of a(SrO) and a(BaO) , lga(SrO) = f (a(SiO2 ) , a[Si] ) ≤ (–4) and lga(BaO) = f (a(SiO2 ) , a[Si] ) ≤ (–3), can be achieved at equilibrium values of silicon activity in metal melts a[Si] > 0,5 during strontium reduction and a[Si] > 0,7 during barium reduction.
About the Authors
N. F. YakushevichRussian Federation
Nikolai F. Yakushevich, Dr. Sci. (Eng.), Prof.-Consultant of the Chair of Non-Ferrous Metallurgy and Chemical Engineering
42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007, Russian Federation
E. V. Protopopov
Russian Federation
Evgenii V. Protopopov, Dr. Sci. (Eng.), Prof. of the Chair of Ferrous Metallurgy
42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007, Russian Federation
M. V. Temlyantsev
Russian Federation
Mikhail V. Temlyantsev, Dr. Sci. (Eng.), Prof., Vice-Rector for Educational and Tutorial Work
42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007, Russian Federation
V. V. Pavlov
Russian Federation
Vyacheslav V. Pavlov, Candidates for a degree of Cand. Sci. (Eng.) of the Chair of Ferrous Metallurgy
42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007, Russian Federation
A. A. Abina
Russian Federation
Anastasiya A. Abina, Postgraduate of the Chair of Ferrous Metallurgy
42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007, Russian Federation
O. V. Bivol
Russian Federation
Ol’ga V. Bivol, Postgraduate of the Chair “Thermal Power and Ecology”
42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007, Russian Federation
References
1. Yakushevich N.F., Protopopov E.V., Temlyantsev M.V., Pavlov V.V., Abina A.A., Kuznetsova O.V. Thermodynamics of alkaline-earth metals reduction from oxides and conditions of alloys crystallization in the system Fe – Si – Me (AEM). Problemy chernoi metallurgii i materialovedeniya. 2020, no. 2, pp. 5–15. (In Russ.).
2. Elliott J.F., Gleiser M., Ramakrishna V. Thermochemistry for Steelmaking. Addison – Wesley Inc. 1963. (Russ. ed.: Elliott J., Gleiser M., Ramakrishna V. Termokhimiya staleplavil’nykh protsessov. Moscow: Metallurgiya, 1969, 252 p.).
3. Yakushevich N.F., Galevskii G.V. Interaction of Carbon with Calcium Oxide, Silicon, Aluminum. Novokuznetsk: izd. SibSIU, 1999, 250 p. (In Russ.).
4. Schlackenatlas. Verein Deutscher Eisenhüttenleute, Verlag Stahleisen, 1981, 282 p. (Russ. ed.: Atlas shlakov. Sprav. Moscow: Metallurgiya, 1985, 208 p.).
5. Ryabchikov I.V. Modifiers and Technologies of Extra-Furnace Processing of Iron-Carbon Alloys. Moscow: Ekomet, 2008, 400 p. (In Russ.).
6. Kozhevnikov G.N., Zaiko V.P., Ryss M.A. Electrothermy of Ligatures of Alkaline-Earth Metals with Silicon. Moscow: Nauka, 1978, 224 p. (In Russ.).
7. Zubov V.L., Gasik M.I. Electrometallurgy of Ferrosilicon. Dnepropetrovsk: Sistemnye tekhnologii, 2002, 704 p. (In Russ.).
8. Li M., Li L., Zhang B., Li Q., Wu W., Zou Z. Numerical analysis of the particle-induced effect on gas flow in a supersonic powder-laden oxygen jet. Metallurgical and Materials Transactions B. 2020, vol. 51, no. 4, pp. 1718–1730. http://doi.org/10.1007/s11663-020-01855-3
9. Wang B., Shen S., Ruan Y., Сheng S., Peng W., Zhang J. Simulation of gas-liquid two-phase flow in metallurgical process. Acta Metallurgica Sinica. 2020, vol. 56, no. 4, pp. 619–632. http://doi.org/10.11900/0412.1961.2019.00385
10. Barella S., Mapelli C., Mombelli D., Gruttadauria A., Laghi E., An-cona V., Valentino G. Model for the final decarburisation of the steel bath through a self-bubbling effect. Ironmaking and Steelmaking. 2019, vol. 46, no. 8, pp. 721–724. http://doi.org/10.1080/03019233.2017.1405179
11. Pariser H.H., Backeberg N.R., Masson O.C.M., Bedder J.C.M. Changing nickel and chromium stainless steel markets – A review. Journal of the Southern African Institute of Mining and Metallurgy. 2018, vol. 118, no. 6, pp. 563–568. https://doi.org/10.17159/2411-9717/2018/V118N6A1
12. Zhuchkov V.I., Zayakin O.V., Zhdanov A.V. Utilization of substandard and offgrade raw materials for chromium and manganese ferroalloys production. In: Proceedings of the 12th Int. Ferroalloys Congress: Sustainable Future. INFACON 2010. Helsinki, Finland: Outotec Oyj, 2010, pp. 311–315.
13. Irons G.A., Tong X.-P. Treatment of steel with alkaline-earth elements. ISIJ International. 1995, vol. 35, no. 7, pp. 838–844. https://doi.org/10.2355/isijinternational.35.838
14. Bakin I.V., Mikhailov G.G., Golubtsov V.A., Ryabchikov I.V., Dresvyankina L.E. Methods for improving the efficiency of steel modifying. Material Science Forum. 2019, vol. 946, pp. 215–222. https://doi.org/10.4028/www.scientific.net/MSF.946.215
15. Yakushevich N.F., Polyakh O.A., Galevskii G.V., Tyazhina A.A. Phase and chemical equilibria in melt (Fe – Si – C)–slag (CaO – Al2O3 – SiO2 )–gas (O2 – SiO – CO) system. Izvestiya. Ferrous Metallurgy. 2015, vol. 58, no. 5, pp. 316–321. (In Russ.). https://doi.org/10.15825/0368-0797-2015-5-316-321
16. Yakushevich N.F., Kondrat’ev D.V. Thermodynamics of first slag in CaO – Al2O3 – SiO2 system. Izvestiya. Ferrous Metallurgy. 2000, vol. 43, no. 2, pp. 4–9. (In Russ.).
17. Esin Yu.O., Sandakov V.N., Gel’d P.V., etc. Enthalpies of mixing liquid silicon and barium at 1723 K. Zhurnal prikladnoi khimii. 1973, vol. 46, no. 11, pp. 2402–2405. (In Russ.).
18. Esin Yu.O., Kolesnikov S.P., Baev V.M., etc. Enthalpy of formation of strontium-silicon alloys. Zhurnal fizicheskoi khimii. 1979, vol. 53, no. 6, pp. 1624–1625. (In Russ.).
19. Turkdogan E.T. Phуsicochemical properties of slags and glasses. The Metal Soc. 1983, vol. 10, no. 4, pp. 113–117.
20. Grigor’ev Yu.V., Ryabchikov I.V., Roshchin V.E. Thermodynamic analysis of the co-reduction of silicon and barium with carbon. Izvestiya. Ferrous Metallurgy. 2005, vol. 48, no. 7, pp. 3–5. (In Russ.).
21. Schei A., Tuset J.K., Tveit H. Production of High Silicon Alloys. Trondheim, Norway: Tapir Academic Press, 1998, 363 p.
22. Wang J., Mao Yu. Slag Figures. Berjing: Metallurgical Industry Press, 1989, pp. 44–60.
23. Breitzmann M., Engell H.-J., Janke D. Refining of steel melts using alkaline earth metals. Steel Research. 1988, vol. 59, no. 7, pp. 289–294. https://doi.org/10.1002/srin.198801505
24. Li S., Cheng G., Yang L., Chen L., Yan Q., Li C. A thermodynamic model to desing the equilibrium slag compositions during electroslag remelting process: Description and verification. ISIJ International. 2017, vol. 57, no. 4, pp. 713–722. https://doi.org/10.2355/isijinternational.ISIJINT-2016-655
25. Hou D., Jiang Z.H., Dong Y.W., Gong W., Cao Y.L., Cao H. Effect of slag composition on the oxidation kinetics of alloying elements during electroslag remelting of stainless steel: Part-1. Mass-transfer model. ISIJ International. 2017, vol. 57, no. 8, pp. 1400–1409. https://doi.org/10.2355/isijinternational.ISIJINT-2017-147
26. Ozturk B., Fruehan R.J. Activity of silica in calcium-aluminate based slags. Metallurgical Transactions B. 1987, vol. 18, no. 4, pp. 746–751. https://doi.org/10.1007/BF02672895
27. Weiss T., Schwerdfeger K. Chemical equilibria between silicon and slag melts. Metallurgical and Materials Transactions B. 1994, vol. 25, no. 4, pp. 497–504. https://doi.org/10.1007/BF02650071
28. Zhang X.-B., Jiang G.C., Xu K.D. Prediction of component activities of quaternary systems using the sub-regular solution model. Acta Metallurgica Sinica. 1992, vol. 5b, no. 6, pp. 476 – 482.
Review
For citations:
Yakushevich N.F., Protopopov E.V., Temlyantsev M.V., Pavlov V.V., Abina A.A., Bivol O.V. Thermodynamics of alkaline-earth metals reduction from slag melts. Izvestiya. Ferrous Metallurgy. 2022;65(4):268-277. (In Russ.) https://doi.org/10.17073/0368-0797-2022-4-268-277