Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Combined Electron-Ion-Plasma Treatment of 40Cr Steel Surface

https://doi.org/10.17073/0368-0797-2022-2-127-133

Abstract

In the industry of most developed countries, complex alloying as a surface layer saturation with metal and gas atoms in a certain sequence is extensively used. This study identifies and analyzes the changes in the elemental and phase composition, defect substructure, mechanical (microhardness), and tribological (wear resistance and friction ratio) properties of alloyed carbon steel after complex treatment, consisting of surface layer saturation with Al atoms and subsequent nitriding. We studied 40Cr steel. Its initial structure contains plate-like ferrite and pearlite grains. A TRIO system with a 600×600×600 mm3 vacuum chamber was used for complex alloying. The system was equipped with a control module for electron-ionic treatment. Aluminizing lasted for 4 hours at 963 K. The electric arc evaporator cathode was made of A7 aluminum alloy (98.8  %  Al). Subsequent nitriding of the aluminized layer lasted for 2 hours at 803 K. It was found that such treatment results in a modified surface layer up to 70 µm thick. The complex alloying of steel forms multiphase submicro- and nanostructures with Al nitrides, Fe and Cr nitrides, and aluminides. We found that steel hardness is greatest at the modified surface. It exceeds the initial hardness by 300 %. Complex alloyed steel is less resistant to dry friction.

About the Authors

Yu. F. Ivanov
Institute of High Current Electronics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Yurii F. Ivanov, Dr. Sci. (Phys.-Math.), Chief Researcher of the Laboratory of Plasma Emission Electronics

2/3 Akademicheskii Ave., Tomsk 634055



Yu. Kh. Akhmadeev
Institute of High Current Electronics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Yurii Ch. Akhmadeev, Cand. Sci. (Eng.), Leading Researcher of the Laboratory of Plasma Emission Electronics 

2/3 Akademicheskii Ave., Tomsk 634055



I. V. Lopatin
Institute of High Current Electronics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Il’ya V. Lopatin, Cand. Sci. (Eng.), Senior Researcher of the Laboratory of Plasma Emission Electronics 

2/3 Akademicheskii Ave., Tomsk 634055



O. V. Krysina
Institute of High Current Electronics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Ol’ga V. Krysina, Cand. Sci. (Eng.), Senior Researcher of the Laboratory of Plasma Emission Electronics 

2/3 Akademicheskii Ave., Tomsk 634055



E. A. Petrikova
Institute of High Current Electronics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Elizaveta A. Petrikova, Junior Researcher of the Laboratory of Plasma Emission Electronics 

2/3 Akademicheskii Ave., Tomsk 634055



References

1. Faye D.Nd., Dias M., Rojas­Hernandez R.E., Sousa N., Santos L.F., Almeida R.M., Alves E. Structural and optical studies of aluminosilicate films doped with (Tb3+, Er3+)/Yb3+ by ion implantation. Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms. 2019, vol. 459, pp. 71–75. https://doi.org/10.1016/j.nimb.2019.08.027

2. Kuang X., Li L., Wang L., Li G., Huang K., Xu Y. The effect of N+ ion­implantation on the corrosion resistance of HiPIMS­TiN coatings sealed by ALD­layers. Surface and Coatings Technology. 2019, vol. 374, pp. 72–82. https://doi.org/10.1016/j.surfcoat.2019.05.055

3. Vorob’ev V.L., Gilmutdinov F.Z., Bykov P.V., Bayankin V.Ya., Pospelova I.G., Russkikh I.T. Nanoscale layers formed on the surface of a titanium alloy by the ion­beam mixing of carbon with a substrate. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2019, vol. 13, no. 5, pp. 979–984. https://doi.org/10.1134/S1027451019050379

4. Boes J., Röttger A., Becker L., Theisen W. Processing of gas­nitrided AISI 316L steel powder by laser powder bed fusion – Microstructure and properties. Additive Manufacturing. 2019, vol. 30, article 100836. https://doi.org/10.1016/j.addma.2019.100836

5. Ren Z., Eppell S., Collins S., Ernst F. Co–Cr–Mo alloys: Improved wear resistance through low­temperature gas­phase nitro­carburization. Surface and Coatings Technology. 2019, vol. 378, article 124943. https://doi.org/10.1016/j.surfcoat.2019.124943

6. Bobylyov E. Diffusion saturation from fusible liquid metal media solutions by titanium of TK and WC­Co alloys as way to increase of tool durability. IOP Conference Series: Materials Science and Engineering. 2018, vol. 453, no. 3, article 032019. https://doi.org/10.1088/1757-899X/450/3/032019

7. Sokolov A.G., Bobylyov E.E. Diffusion saturation by titanium from liquid­metal media as way to increase carbide­tipped tool life. Solid State Phenomena. 2017, vol. 265, pp. 181–186. https://doi.org/10.4028/www.scientific.net/SSP.265.181

8. Sridharan N., Isheim D., Seidman D.N., Babu S.S. Colossal super saturation of oxygen at the iron­aluminum interfaces fabricated using solid state welding. Scripta Materialia. 2017, vol. 130, pp. 196–199. https://doi.org/10.1016/j.scriptamat.2016.11.040

9. Barda H., Rabkin E. The role of interface diffusion in solid state dewetting of thin films: The nano­marker experiment. Acta Materialia. 2019, vol. 177, pp. 121–130. https://doi.org/10.1016/j.actamat.2019.07.042

10. Konusova F., Pavlov S., Lauka A., Tarbokov V., Karpov S., Karpov V., Gadirov R., Kashkarov E., Remnev G. Effect of short­pulsed 200 keV C+ ion beam and continuous 350 keV He2+ ion beam irradiation on optical properties of Al­Si­N coatings with a various Si content. Surface and Coatings Technology. 2020, vol. 389, article 125564. https://doi.org/10.1016/j.surfcoat.2020.125564

11. Kaputkina L.M., Medvedev M.G., Prokoshkina V.G., Smarygina I.V., Svyazhin A.G. Influence of nitrogen alloying at strengthening and stability of austenite steel type Cr18Ni10. Izvestiya. Ferrous Metallurgy. 2014, vol. 57, no. 7, pp. 43–50. (In Russ.). https://doi.org/10.17073/0368-0797-2014-7-43-50

12. Rogachev S.O., Stomakhin A.Ya., Nikulin S.A., Kadach M.V., Khatkevich V.M. Structure and mechanical properties of austenitic Cr–Ni–Ti steels after high­temperature nitriding. Izvestiya. Ferrous Metallurgy. 2019, vol. 62, no. 5, pp. 366–373. (In Russ.). https://doi. org/10.17073/0368-0797-2019-5-366-373

13. Gur’ev A.M., Ivanov S.G., Gur’ev M.A., Chernykh E.V., Ivanova T.G. Thermochemical treatment of the materials for cutting tools. Izvestiya. Ferrous Metallurgy. 2015, vol. 58, no. 8, pp. 578–582. (In Russ.). https://doi.org/10.17073/0368-0797-2015-8-578-582

14. Lakhtin Yu.M., Arzamasov B.M. Chemical-Thermal Treatment of Metals. Moscow: Metallurgiya, 1985, 256 p. (In Russ.).

15. Gribkov V.A., Grigor’ev F.I., Kalin B.A., Yakushin V.L. Perspective Radiation-Beam Technologies of Materials Treatment. Textbook. Moscow: Kruglyi stol, 2001, 528 p. (In Russ.).

16. Cherenda N.N., Shymanski V.I., Uglov V.V., Astashinskii V.M., Kuz’mitskii A.M., Koval’ N.N., Ivanov Yu.F., Teresov A.D. Formation of zirconium–titanium solid solutions under the action of compression plasma flows and high­current electron beams. Inorganic Materials: Applied Research. 2012, vol. 3, no. 5, pp. 365–370. https://doi.org/10.1134/S2075113312050024

17. Ivanov Yu.F., Akhmadeev Yu.H.,. Lopatin I.V, Petrikova E.A., Denisova Yu.A., Teresov A.D., Krysina O.V. Complex beam­plasma surface treatment of high­chromium steel. Journal of Physics: Conference Series. 2018, vol. 1115, no. 3, article 032031. https://doi.org/10.1088/1742-6596/1115/3/032031

18. Devyatkov V.N., Ivanov Yu.F., Krysina O.V., Koval N.N., Petrikova E.A., Shugurov V.V. Equipment and processes of vacuum electron­ion plasma surface engineering. Vacuum. 2017, vol. 143, pp. 464–472. https://doi.org/10.1016/j.vacuum.2017.04.016

19. Poletika I.M., Krylova T.A., Tetyutskaya M.V. Structure and properties of deposited coatings with the nano­structured surface layer. Izvestiya. Ferrous Metallurgy. 2014, vol. 57, no. 10, pp. 51–57. (In Russ.). https://doi.org/10.17073/0368-0797-2014-10-51-57

20. Markov A.B., Yakovlev E.V., Shepel’ D.A., Solov’ev A.V., Petrov V.I. The synthesis of Ni–Al surface alloy by low­energy, highcurrent electron beam irradiation of composite coating. Russian Physics Journal. 2019, vol. 62, pp. 1298–1305. https://doi.org/10.1007/s11182-019-01847-0

21. Markov A., Yakovlev E., Shepel’ D., Bestetti M. Synthesis of a Cr­Cu surface alloy using a low­energy high­current electron beam. Results in Physics. 2019, vol. 12, pp. 1915–1924. https://doi.org/10.1016/j.rinp.2019.02.010

22. Koval N.N., Ivanov Yu.F. Complex electron­ion­plasma processing of aluminum surface in a single vacuum cycle. Russian Physics Journal. 2019, vol. 62, pp. 1161–1170. https://doi.org/10.1007/s11182-019-01831-8

23. Koval N.N., Ivanov Yu.F., Devyatkov V.N., Shugurov V.V., Teresov A.D., Petrikova E.A. Development of a combined electron­ionplasma method of surface modification of materials and products. Russian Physics Journal. 2021, vol. 63, pp. 1829–1838. https://doi.org/10.1007/s11182-021-02240-6

24. Tushinskii L.I., Bataev A.A., Tikhomirova L.B. Structure of Pearlite and Construction Strength of Steel. Novosibirsk: VO Nauka, 1993, 280 p. (In Russ.).

25. Schastlivtsev V.M., Mirzaev D.A., Yakovleva I.L., Okishev K.Yu., Tabatchikova T.I., Khlebnikova Yu.V. Pearlite in Carbon Steel. Yekaterenburg: UB RAS, 2006, 312 p. (In Russ.).


Review

For citations:


Ivanov Yu.F., Akhmadeev Yu.Kh., Lopatin I.V., Krysina O.V., Petrikova E.A. Combined Electron-Ion-Plasma Treatment of 40Cr Steel Surface. Izvestiya. Ferrous Metallurgy. 2022;65(2):127-133. https://doi.org/10.17073/0368-0797-2022-2-127-133

Views: 421


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)