Combined Electron-Ion-Plasma Treatment of 40Cr Steel Surface
https://doi.org/10.17073/0368-0797-2022-2-127-133
Abstract
In the industry of most developed countries, complex alloying as a surface layer saturation with metal and gas atoms in a certain sequence is extensively used. This study identifies and analyzes the changes in the elemental and phase composition, defect substructure, mechanical (microhardness), and tribological (wear resistance and friction ratio) properties of alloyed carbon steel after complex treatment, consisting of surface layer saturation with Al atoms and subsequent nitriding. We studied 40Cr steel. Its initial structure contains plate-like ferrite and pearlite grains. A TRIO system with a 600×600×600 mm3 vacuum chamber was used for complex alloying. The system was equipped with a control module for electron-ionic treatment. Aluminizing lasted for 4 hours at 963 K. The electric arc evaporator cathode was made of A7 aluminum alloy (98.8 % Al). Subsequent nitriding of the aluminized layer lasted for 2 hours at 803 K. It was found that such treatment results in a modified surface layer up to 70 µm thick. The complex alloying of steel forms multiphase submicro- and nanostructures with Al nitrides, Fe and Cr nitrides, and aluminides. We found that steel hardness is greatest at the modified surface. It exceeds the initial hardness by 300 %. Complex alloyed steel is less resistant to dry friction.
Keywords
About the Authors
Yu. F. IvanovRussian Federation
Yurii F. Ivanov, Dr. Sci. (Phys.-Math.), Chief Researcher of the Laboratory of Plasma Emission Electronics
2/3 Akademicheskii Ave., Tomsk 634055
Yu. Kh. Akhmadeev
Russian Federation
Yurii Ch. Akhmadeev, Cand. Sci. (Eng.), Leading Researcher of the Laboratory of Plasma Emission Electronics
2/3 Akademicheskii Ave., Tomsk 634055
I. V. Lopatin
Russian Federation
Il’ya V. Lopatin, Cand. Sci. (Eng.), Senior Researcher of the Laboratory of Plasma Emission Electronics
2/3 Akademicheskii Ave., Tomsk 634055
O. V. Krysina
Russian Federation
Ol’ga V. Krysina, Cand. Sci. (Eng.), Senior Researcher of the Laboratory of Plasma Emission Electronics
2/3 Akademicheskii Ave., Tomsk 634055
E. A. Petrikova
Russian Federation
Elizaveta A. Petrikova, Junior Researcher of the Laboratory of Plasma Emission Electronics
2/3 Akademicheskii Ave., Tomsk 634055
References
1. Faye D.Nd., Dias M., RojasHernandez R.E., Sousa N., Santos L.F., Almeida R.M., Alves E. Structural and optical studies of aluminosilicate films doped with (Tb3+, Er3+)/Yb3+ by ion implantation. Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms. 2019, vol. 459, pp. 71–75. https://doi.org/10.1016/j.nimb.2019.08.027
2. Kuang X., Li L., Wang L., Li G., Huang K., Xu Y. The effect of N+ ionimplantation on the corrosion resistance of HiPIMSTiN coatings sealed by ALDlayers. Surface and Coatings Technology. 2019, vol. 374, pp. 72–82. https://doi.org/10.1016/j.surfcoat.2019.05.055
3. Vorob’ev V.L., Gilmutdinov F.Z., Bykov P.V., Bayankin V.Ya., Pospelova I.G., Russkikh I.T. Nanoscale layers formed on the surface of a titanium alloy by the ionbeam mixing of carbon with a substrate. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2019, vol. 13, no. 5, pp. 979–984. https://doi.org/10.1134/S1027451019050379
4. Boes J., Röttger A., Becker L., Theisen W. Processing of gasnitrided AISI 316L steel powder by laser powder bed fusion – Microstructure and properties. Additive Manufacturing. 2019, vol. 30, article 100836. https://doi.org/10.1016/j.addma.2019.100836
5. Ren Z., Eppell S., Collins S., Ernst F. Co–Cr–Mo alloys: Improved wear resistance through lowtemperature gasphase nitrocarburization. Surface and Coatings Technology. 2019, vol. 378, article 124943. https://doi.org/10.1016/j.surfcoat.2019.124943
6. Bobylyov E. Diffusion saturation from fusible liquid metal media solutions by titanium of TK and WCCo alloys as way to increase of tool durability. IOP Conference Series: Materials Science and Engineering. 2018, vol. 453, no. 3, article 032019. https://doi.org/10.1088/1757-899X/450/3/032019
7. Sokolov A.G., Bobylyov E.E. Diffusion saturation by titanium from liquidmetal media as way to increase carbidetipped tool life. Solid State Phenomena. 2017, vol. 265, pp. 181–186. https://doi.org/10.4028/www.scientific.net/SSP.265.181
8. Sridharan N., Isheim D., Seidman D.N., Babu S.S. Colossal super saturation of oxygen at the ironaluminum interfaces fabricated using solid state welding. Scripta Materialia. 2017, vol. 130, pp. 196–199. https://doi.org/10.1016/j.scriptamat.2016.11.040
9. Barda H., Rabkin E. The role of interface diffusion in solid state dewetting of thin films: The nanomarker experiment. Acta Materialia. 2019, vol. 177, pp. 121–130. https://doi.org/10.1016/j.actamat.2019.07.042
10. Konusova F., Pavlov S., Lauka A., Tarbokov V., Karpov S., Karpov V., Gadirov R., Kashkarov E., Remnev G. Effect of shortpulsed 200 keV C+ ion beam and continuous 350 keV He2+ ion beam irradiation on optical properties of AlSiN coatings with a various Si content. Surface and Coatings Technology. 2020, vol. 389, article 125564. https://doi.org/10.1016/j.surfcoat.2020.125564
11. Kaputkina L.M., Medvedev M.G., Prokoshkina V.G., Smarygina I.V., Svyazhin A.G. Influence of nitrogen alloying at strengthening and stability of austenite steel type Cr18Ni10. Izvestiya. Ferrous Metallurgy. 2014, vol. 57, no. 7, pp. 43–50. (In Russ.). https://doi.org/10.17073/0368-0797-2014-7-43-50
12. Rogachev S.O., Stomakhin A.Ya., Nikulin S.A., Kadach M.V., Khatkevich V.M. Structure and mechanical properties of austenitic Cr–Ni–Ti steels after hightemperature nitriding. Izvestiya. Ferrous Metallurgy. 2019, vol. 62, no. 5, pp. 366–373. (In Russ.). https://doi. org/10.17073/0368-0797-2019-5-366-373
13. Gur’ev A.M., Ivanov S.G., Gur’ev M.A., Chernykh E.V., Ivanova T.G. Thermochemical treatment of the materials for cutting tools. Izvestiya. Ferrous Metallurgy. 2015, vol. 58, no. 8, pp. 578–582. (In Russ.). https://doi.org/10.17073/0368-0797-2015-8-578-582
14. Lakhtin Yu.M., Arzamasov B.M. Chemical-Thermal Treatment of Metals. Moscow: Metallurgiya, 1985, 256 p. (In Russ.).
15. Gribkov V.A., Grigor’ev F.I., Kalin B.A., Yakushin V.L. Perspective Radiation-Beam Technologies of Materials Treatment. Textbook. Moscow: Kruglyi stol, 2001, 528 p. (In Russ.).
16. Cherenda N.N., Shymanski V.I., Uglov V.V., Astashinskii V.M., Kuz’mitskii A.M., Koval’ N.N., Ivanov Yu.F., Teresov A.D. Formation of zirconium–titanium solid solutions under the action of compression plasma flows and highcurrent electron beams. Inorganic Materials: Applied Research. 2012, vol. 3, no. 5, pp. 365–370. https://doi.org/10.1134/S2075113312050024
17. Ivanov Yu.F., Akhmadeev Yu.H.,. Lopatin I.V, Petrikova E.A., Denisova Yu.A., Teresov A.D., Krysina O.V. Complex beamplasma surface treatment of highchromium steel. Journal of Physics: Conference Series. 2018, vol. 1115, no. 3, article 032031. https://doi.org/10.1088/1742-6596/1115/3/032031
18. Devyatkov V.N., Ivanov Yu.F., Krysina O.V., Koval N.N., Petrikova E.A., Shugurov V.V. Equipment and processes of vacuum electronion plasma surface engineering. Vacuum. 2017, vol. 143, pp. 464–472. https://doi.org/10.1016/j.vacuum.2017.04.016
19. Poletika I.M., Krylova T.A., Tetyutskaya M.V. Structure and properties of deposited coatings with the nanostructured surface layer. Izvestiya. Ferrous Metallurgy. 2014, vol. 57, no. 10, pp. 51–57. (In Russ.). https://doi.org/10.17073/0368-0797-2014-10-51-57
20. Markov A.B., Yakovlev E.V., Shepel’ D.A., Solov’ev A.V., Petrov V.I. The synthesis of Ni–Al surface alloy by lowenergy, highcurrent electron beam irradiation of composite coating. Russian Physics Journal. 2019, vol. 62, pp. 1298–1305. https://doi.org/10.1007/s11182-019-01847-0
21. Markov A., Yakovlev E., Shepel’ D., Bestetti M. Synthesis of a CrCu surface alloy using a lowenergy highcurrent electron beam. Results in Physics. 2019, vol. 12, pp. 1915–1924. https://doi.org/10.1016/j.rinp.2019.02.010
22. Koval N.N., Ivanov Yu.F. Complex electronionplasma processing of aluminum surface in a single vacuum cycle. Russian Physics Journal. 2019, vol. 62, pp. 1161–1170. https://doi.org/10.1007/s11182-019-01831-8
23. Koval N.N., Ivanov Yu.F., Devyatkov V.N., Shugurov V.V., Teresov A.D., Petrikova E.A. Development of a combined electronionplasma method of surface modification of materials and products. Russian Physics Journal. 2021, vol. 63, pp. 1829–1838. https://doi.org/10.1007/s11182-021-02240-6
24. Tushinskii L.I., Bataev A.A., Tikhomirova L.B. Structure of Pearlite and Construction Strength of Steel. Novosibirsk: VO Nauka, 1993, 280 p. (In Russ.).
25. Schastlivtsev V.M., Mirzaev D.A., Yakovleva I.L., Okishev K.Yu., Tabatchikova T.I., Khlebnikova Yu.V. Pearlite in Carbon Steel. Yekaterenburg: UB RAS, 2006, 312 p. (In Russ.).
Review
For citations:
Ivanov Yu.F., Akhmadeev Yu.Kh., Lopatin I.V., Krysina O.V., Petrikova E.A. Combined Electron-Ion-Plasma Treatment of 40Cr Steel Surface. Izvestiya. Ferrous Metallurgy. 2022;65(2):127-133. https://doi.org/10.17073/0368-0797-2022-2-127-133