Application of high-entropy alloys
https://doi.org/10.17073/0368-0797-2021-10-747-754
Abstract
From accumulated information on structure, properties, stability, and methods of manufacturing the high-entropy alloys (HEA) created early in the 21 century it follows that they possess a whole complex of useful properties that suggests their perspective application in different branches of industry. The authors have made a short review of scientific articles on analysis of possibilities of HEA application in specific science-consuming branches of the last 5 years. In biomedicine the protective coatings made of (TiZrNbHfTa)N and (TiZrNbHfTa)O HEAs possess biocompatibility, high level of mechanical properties, high wear- and corrosion resistance in physiological media, and excellent adhesion. Products made of (MoTa)χNbTiZr passed clinical tests successfully when being implanted to living muscular tissue. The developed HEAs based on rare-earth elements and metals of Fe group such as YbTbDyAlMe (Me = Fe, Co, Ni) possess magnetocaloric effect, have Curie temperature close to room one and may be used in modern refrigerator mechanisms. Changing in stoichiometric composition of CoCrFeNiTi HEAs, alloying them and performing thermal treatment, the researchers succeed in obtaining soft magnetic materials. Fields of HEA application are presented as following: catalysts of ammonia oxidation - (PtPdRhRuCe), ammonia decomposition - (RuRhCoNiIr), oxidation of aromatic alcohols - (Co0,2Ni0,2Cu0,2Mg0,2Zn0,2 ), electric catalysts of hydrogen extraction - (Ni20Fe20Mo10Cr15Co35 ), redox reactions (AlCuNiPtMn and AlNiCuPtPdAu), and oxidation of methanol/ethanol. HEAs can be used as electrodes - anodes and cathodes for Li-ion and Na-ion accumulators. Synthesized nanoporous HEA AlCoCrFeNi has high bulk density up to 700 F/cm3 and cyclic stability (>3000 cycles) and is used in supercapacitors. High-entropy oxides such as (MgNiCoCuZn)0.95Li0.05O with high dielectric properties in a wide frequency range may be used in electronic converters. Examples of HEA application are given: as coatings of ship parts being operated in sea water, various welded joints, parts of nuclear reactors. Perspectives of widening the fields of HEA application are indicated.
Keywords
About the Authors
V. E. GromovRussian Federation
Viktor E. Gromov - Dr. Sci. (Phys.-Math.), Prof., Head of the Chair of Scien ce named after V.M. Finkel', Siberian State Industrial University.
42 Kirova Str., Novokuznetsk, Kemerovo Region - Kuzbass 654007.
Yu. A. Shlyarova
Russian Federation
Yuliya A. Shlyarova - Postgraduate of the Chair of Science named after V.M. Finkel', Siberian State Industrial University.
42 Kirova Str., Novokuznetsk, Kemerovo Region - Kuzbass 654007.
S. V. Konovalov
Russian Federation
Sergei V. Konovalov - Dr. Sci. (Eng.), Prof., Head of the Chair of Metals Technology and Aviation Materials, Samara National Research University.
34 Moskovskoe Route, Samara 443086.
S. V. Vorob'ev
Russian Federation
Sergei V. Vorob'ev - Dr. Sci. (Eng.), Senior Researcher of Department of Scientific Researches, Siberian State Industrial University.
42 Kirova Str., Novokuznetsk, Kemerovo Region - Kuzbass 654007.
O. A. Peregudov
Russian Federation
Oleg A. Peregudov - Cand. Sci. (Eng.), Assistant to the Rector for Youth Policy, Omsk State Technical University.
11 Mira Ave., Omsk 644050.
References
1. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A. 2004, vol. 375-377, pp. 213-218. https://doi.org/10.1016/j.msea.2003.10.257
2. Gromov V.E., Konovalov S.V., Ivanov Yu.F., Osintsev K.A., Ruban-nikova Yu.A., Peregudov O.A., Semin A.P. High-Entropy Alloys. Novokuznetsk: Poligrafist, 2021, 179 p. (In Russ.).
3. Huang Y.S., Chen L., Lui H.W., Cai M.H., Yeh J.W. Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy. Materials Science and Engineering: A. 2007, vol. 457, no. 1-2, pp. 77-83. https://doi.org/10.1016/j.msea.2006.12.001
4. Tung C.C., Yeh J.W., Shun T.T., Chen S.K., Huang Y.S., Chen H.C. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Materials Letters. 2007, vol. 61, no. 1, pp. 1-5. https://doi.org/10.1016/j.matlet.2006.03.140
5. Zhou Y.J., Zhang Y., Kim T.N., Chen G.L. Microstructure characterizations and strengthening mechanism of multi-principal component AlCoCrFeNiTi0.5 solid solution alloy with excellent mechanical properties. Materials Letters. 2008, vol. 62, no. 17-18, pp. 2673-2676. https://doi.org/10.1016/j.matlet.2008.01.011
6. Chang H.W., Huang P.K., Yeh J.W., Davison A., Tsau C.H., Yang C.C. Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multiprincipal-component (AlCrMoSiTi)N coatings. Surface and Coatings Technology. 2008, vol. 202, no. 14, pp. 3360-3366. https://doi.org/10.1016/j.surfcoat.2007.12.014
7. Pogrebnjak A.D., Bagdasaryan A.A., Yakushchenko I.V., Beresnev V.M. The structure and properties of high-entropy alloys and nitride coatings based on them. Russian Chemical Reviews. 2014, vol. 83, no. 11, pp. 1027-1061. (In Russ.). https://doi.org/10.1070/RCR4407
8. Huang P.K., Yeh J.W., Shun T.T., Chen S.K. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Advanced Engineering Materials. 2004, vol. 6, no. 1-2, pp. 74-78. https://doi.org/10.1002/adem.200300507
9. Hsu C.Y., Yeh J.W., Chen S.K., Shun T.T. Wear resistance and high-temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition. Metallurgical and Material Transaction: A. 2004, vol. 35, pp. 1465-1469. https://doi.org/10.1007/s11661-004-0254-x
10. Tsai M.H., Yeh J.W., Gan J.Y. Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon. Thin Solid Films. 2008, vol. 516, no. 16, pp. 5527-5530. https://doi.org/10.1016/j.tsf.2007.07.109
11. Zhu G., Liu Y., Ye J. Early high-temperature oxidation behaviour of Ti(C, N)-based cermets with multi-component AlCoCrFeNi high-entropy alloy binder. International Journal of Refractory Metals and Hard Materials. 2014, vol. 44, pp. 35-41. https://doi.org/10.1016/j.ijrmhm.2014.01.005
12. Gludovatz B., Hohenwarter A., Catoor D., Chang E.H., George E.P., Ritchie R.O. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014, vol. 345, no. 6201, pp. 1153-1158. https://doi.org/10.1126/science.1254581
13. Xia S.Q., Yang X., Yang T.F., Liu S., Zhang Y. Irradiation resistance in AlxCoCrFeNi high entropy alloys. JOM. 2015, vol. 67, pp. 2340-2344. https://doi.org/10.1007/s11837-015-1568-4
14. Chuang M.-H., Tsai M.-H., Wang W.-R., Lin S.-J., Yeh J.-W. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Materialia. 2011, vol. 59, no. 16, pp. 6308-6317. https://doi.org/10.1016/j.actamat.2011.06.041
15. Senkov O.N., Wilks G.B., Miracle D.B., Chuang C.P., Liaw P.K. Refractory high-entropy alloys. Intermetallics. 2010, vol. 18, no. 9, pp. 1758-1765. https://doi.org/10.1016/j.intermet.2010.05.014
16. Zou Y., Maiti S., Steurer W., Spolenak R. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Materia-lia. 2014, vol. 65, pp. 85-97. https://doi.org/10.1016/j.actamat.2013.11.049
17. Maiti S., Steurer W. Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy. Acta Mate-rialia. 2016, vol. 106, pp. 87-97. https://doi.org/10.1016/j.actamat.2016.01.018
18. Braic V., Balaceanu M., Braic M., Vladescu A., Panseri S., Russo A. Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials. 2012, vol. 10, pp. 197-205. https://doi.org/10.1016/j.jmbbm.2012.02.020
19. Wong K.-K., Hsu H.-C., Wu S.-C., Ho W.-F. Structure and properties of Ti-rich Ti-Zr-Nb-Mo medium-entropy alloys. Journal of Alloys and Compounds. 2021, vol. 868, article 159137. https://doi.org/10.1016/j.jallcom.2021.159137
20. Akmal M., Hussain A., Afzal M., Lee Y.I., Ryu H.J. Systematic study of (MoTa)xNbTiZr medium- and high-entropy alloys for biomedical implants - In vivo biocompatibility examination. Journal of Materials Science and Technology. 2021, vol. 78, pp. 183-191. https://doi.org/10.1016/j.jmst.2020.10.049
21. Zuo T., Gao M.C., Ouyang L., Yang X., Cheng Y., Feng R., Chen S., Liaw P.K., Hawk J.A., Zhang Y. Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Materialia. 2017, vol. 130, pp. 10-18. https://doi.org/10.1016/j.actamat.2017.03.013
22. Mishra R.K., Shahi R. A systematic approach for enhancing magnetic properties of CoCrFeNiTi-based high entropy alloys via stoichiometric variation and annealing. Journal of Alloys and Compounds. 2020, vol. 851, article 153534. https://doi.org/10.1016/j.jallcom.2019.153534
23. Zhang Y. High-Entropy Materials. A brief introduction. Singapore: Springer Nature, 2019, 159 p.
24. Dong Z., Huang S., Strom V., Chai G., Varga L.K., Eriksson O., Vitos L. MnxCr0.3Fe0.5Co0.2Ni0.5Al0.3 high entropy alloys for magnetocaloric refrigeration near room temperature. Journal of Materials Science and Technology. 2021, vol. 79, pp. 15-20. https://doi.org/10.1016/j.jmst.2020.10.071
25. Fu M., Ma X., Zhao K., Li X., Su D. High-entropy materials for energy-related applications. Science. 2021, vol. 24, no. 3, article 102177. https://doi.org/10.1016/j.isci.2021.102177
26. Tang J., Xu J.L., Ye Z.G., Li X.B., Luo J.M. Microwave sintered porous CoCrFeNiMo high entropy alloy as an efficient electrocatalyst for alkaline oxygen evolution reaction. Journal of Materials Science and Technology. 2021, vol. 79, pp. 171-177. https://doi.org/10.1016/j.jmst.2020.10.079
27. Zhao S., Wu H., Yin R., Wang X., Zhong H., Fu Q., Wan W., Cheng T., Shi Y., Cai G., Jiang C., Ren F. Preparation and electrocatalytic properties of (FeCrCoNiAl0.1 )Ox high-entropy oxide and NiCo-(FeCrCoNiAl0.1)Ox heterojunction films. Journal of Alloys and Compounds. 2021, vol. 868, article 159108. https://doi.org/10.1016/j.jallcom.2021.159108
28. Liang H., Qiao D., Miao J., Cao Z., Jiang H., Wang T. Anomalous microstructure and tribological evaluation of AlCrFeNiW0.2Ti0.5 high-entropy alloy coating manufactured by laser cladding in seawater. Journal of Materials Science and Technology. 2021, vol. 85, pp. 224-234. https://doi.org/10.1016/j.jmst.2020.12.050
29. Dada M., Popoola P., Mathe N., Pityana S., Adeosun S., Aramide O. The comparative study of the microstructural and corrosion behaviour of laser-deposited high entropy alloys. Journal of Alloys and Compounds. 2021, vol. 866, article 158777. https://doi.org/10.1016/j.jallcom.2021.158777
30. Adomako N.K., Shin G., Park N., Park K., Kim J.H. Laser dissimilar welding of CoCrFeMnNi-high entropy alloy and duplex stainless steel. Journal of Materials Science and Technology. 2021, vol. 85, pp. 95-105.https://doi.org/10.1016/j.jmst.2021.02.003
31. Marik S., Varghese M., Sajilesh K.P., Singh D., Singh R.P. Superconductivity in equimolar Nb-Re-Hf-Zr-Ti high entropy alloy. Journal of Alloys and Compounds. 2018, vol. 769, pp. 1059-1063. https://doi.org/10.1016/j.jallcom.2018.08.039
32. Marik S., Motla K., Varghese M., Sajilesh K.P., Singh D., Breard Y., Boullay P., Singh R.P. Superconductivity in a new hexagonal high-entropy alloy. Physical Review Materials. 2019, vol. 3, no. 6, article 060602. https://doi.org/10.1103/PhysRevMaterials.3.060602
33. Sogabe R., Goto Y., Mizuguchi Y. Superconductivity in EO0.5F0.5BiS2 with high-entropy-alloy-type blocking layers. Applied Physics Express. 2018, vol. 11, article 053102. https://doi.org/10.7567/APEX.11.053102
34. Rogachev A.S. Structure, stability and properties of high-entropy alloys. Physics of Metals and Metallography. 2020, vol. 121, no. 8, pp. 733-764. https://doi.org/10.31857/S0015323020080094
35. Murty B.S., Yeh J.W., Ranganathan S., Bhattacharjee P.P. High-Entropy Alloys. Second edition. Amsterdam: Elsevier, 2019, 374 p.
36. Gromov V.E., Rubannikova Yu.A., Konovalov S.V., Osintsev K.A., Vorob'ev S.V. Generation of increased mechanical properties of Cantor high-entropy alloy. Izvestiya. Ferrous Metallurgy. 2021, vol. 64, no. 8, pp. 599-605. (In Russ.). https://doi.org/10.17073/0368-0797-2021-8-599-605
Review
For citations:
Gromov V.E., Shlyarova Yu.A., Konovalov S.V., Vorob'ev S.V., Peregudov O.A. Application of high-entropy alloys. Izvestiya. Ferrous Metallurgy. 2021;64(10):747-754. (In Russ.) https://doi.org/10.17073/0368-0797-2021-10-747-754