Коррозионностойкие стали в аддитивном производстве
https://doi.org/10.17073/0368-0797-2021-9-619-650
Abstract
This review discusses the main methods for producing spherical powder particles of corrosion-resistant steels as a material widely used in all industries. Also the examples of products made by modern additive methods are described. Currently, spherical powder particles of corrosion-resistant steels are used in the following additive methods: selective laser melting, selective laser sintering, direct laser sintering, and electron beam melting. Each of these methods has its own requirements for the characteristics of spherical powder particles of corrosion-resistant steels. The review provides a brief description of the principles of operation of each method and the requirements for spherical powder particles of corrosion-resistant steels. It also considers a detailed description of each method of additive manufacturing with a description of the principle of operation and specific examples of obtaining spherical particles of corrosion-resistant steel powders with indication of their properties (morphology, structural features, chemical composition, fluidity, bulk density). A comparative analysis was carried out with a description of disadvantages and advantages of each method. Examples of the use of spherical particles of corrosion-resistant steel powders for the manufacture of products by various additive methods (including post-processing) are given with description of the final products characteristics. Based on the data presented, a conclusion was made about the preferred methods for obtaining spherical particles of corrosion-resistant steel powders for specific additive methods used in modern industry. The review considers the following methods for producing spherical powder particles: water atomization (atomization of liquid metal with a jet of water under pressure); gas atomization (atomization of the melt with a jet of inert gas (argon or nitrogen) under pressure); centrifugal atomization (atomization of molten metal with a high-speed rotating disc); ultrasonic atomization (atomization of liquid metal by ultrasound); non-contact atomization (atomization of liquid metal with a powerful pulse of electric current); plasma wire spraying; plasma spraying of a rotating electrode; plasma spheroidization.
About the Authors
А. G KolmakovRussian Federation
Aleksei G. , Corresponding Member of RAS, Dr. Sci. (Eng.),
Head of the Laboratory
49 Leninskii Ave., Moscow 119991
А. Yu. Ivannikov
Russian Federation
Aleksandr Yu. Ivannikov, Cand. Sci. (Eng.), Senior Researcher
49 Leninskii Ave., Moscow 119991
М. А. Kaplan
Russian Federation
Mikhail A. Kaplan, Junior Researcher
49 Leninskii Ave., Moscow 119991
А. А. Kirsankin
Russian Federation
Andrei A. , Cand. Sci. (Phys.-math.), Senior Researcher
49 Leninskii Ave., Moscow 119991
М. A. Sevost’yanov
Russian Federation
Mikhail A. Sevost’yanov, Cand. Sci. (Eng.), Leading Researcher
49 Leninskii Ave., Moscow 119991
References
1. Benarji K., Ravi Kumar Y., Jinoop A.N., Paul C.P., Bindra K.S. Effect of heat-treatment on the microstructure, mechanical properties and corrosion behaviour of SS 316 structures built by laser directed energy deposition based additive manufacturing. Metals and Mate rials International. 2021, vol. 27, no. 3, pp. 488–499. http://doi.org/10.1007/s12540-020-00838-y
2. Tascioglu E., Karabulut Y., Kaynak Y. Influence of heat treatment temperature on the microstructural, mechanical, and wear behavior of 316L stainless steel fabricated by laser powder bed additive manufacturing. The International Journal of Advanced Manufacturing Technology. 2020, vol. 107, no. 5–6, pp. 1947–1956. http://doi.org/10.1007/s00170-020-04972-0
3. Jeyaprakash N., Yang C.H., Ramkumar K.R. Correlation of micro structural evolution with mechanical and tribological behaviour of SS 304 specimens developed through SLM technique. Metals and Materials International. 2021, pp. 1–12. http://doi.org/10.1007/s12540-020-00933-0
4. Shin W.S., Son B., Song W., Sohn H., Jang H., Kim Y.J., Park C. Heat treatment effect on the microstructure, mechanical properties, and wear behaviors of stainless steel 316L prepared via selective laser melting. Materials Science and Engineering: A. 2021, vol. 806, article 140805. http://doi.org/10.1016/j.msea.2021.140805
5. Bogachev I.A., Sul’yanova E.A., Sukhov D.I., Mazalov P.B. Inves tigation of the microstructure and properties of corrosion-resistant steel of the Fe – Cr – Ni system obtained by selective laser melting. Trudy VIAM. 2019, no. 3(75), pp. 3–13. (In Russ.).
6. Jing G., Wang Z. Defects, densification mechanism and mechani cal properties of 300M steel deposited by high power selective laser melting. Additive Manufacturing. 2021, vol. 38, article 101831. http://doi.org/10.1016/j.addma.2020.101831
7. Nigon G.N., Burkan Isgor O., Pasebani S. The effect of annealing on the selective laser melting of 2205 duplex stainless steel: Microstructure, grain orientation, and manufacturing challenges. Optics & Laser Technology. 2021, vol. 134, article 106643. http://doi.org/10.1016/j.optlastec.2020.106643
8. Cui C., Uhlenwinkel V., Schulz A., Zoch H.W. Austenitic stainless steel powders with increased nitrogen content for laser additive manufacturing. Metals. 2020, vol. 10, no. 1, article 61. http://doi.org/10.3390/met10010061
9. Uhlenwinkel V., Achelis L., Sheikhaliev S., Lagutkine S. A new technique for molten metal atomization. Proceedings ICLASS. 2003, pp. 1–8.
10. Lagutkin S., Achelis L., Sheikhaliev S., Uhlenwinkel V., Srivastava V. Atomization process for metal powder. Materials Science and Engineering: A. 2004, vol. 383, no. 1, pp. 1–6. http://doi.org/10.1016/j.msea.2004.02.059
11. Zepon G., Ellendt N., Uhlenwinkel V., Henein H. Processing as pects in spray forming. Metal Sprays and Spray Deposition. 2017, pp. 297–348. http://doi.org/10.1007/978-3-319-52689-8_8
12. Chen Y., Xiao Z., Zou H., Li S., Li A. Preparation and characteriza tion of fine 316l stainless steel powders prepared by gas atomiza tion. High Performance Structural Materials. 2018, pp. 25–34. http://doi.org/10.1007/978-981-13-0104-9_4
13. Hoeges S., Zwiren A., Schade C. Additive manufacturing using wa ter atomized steel powders. Metal Powder Report. 2017, vol. 72, no. 2, pp. 111‒117. http://doi.org/10.1016/j.mprp.2017.01.004
14. Jiao Z., Li D., Asgarian A., Chatterjee S., Girard B., Paserin V., Lavallee F., Chattopadhyay K. Influence of apex angle and nozzle design on energy and momentum transfer during the water atomization process. POWDERMET 2017, 2017, pp. 127–137.
15. Li R., Shi Y., Wang Z., Wang L., Liu J., Jiang W. Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting. Applied Surface Science. 2010, vol. 256, no. 13, pp. 4350–4356. http://doi.org/10.1016/j.apsusc.2010.02.030
16. Irrinki H., Dexter M., Barmore B., Enneti R., Pasebani S., Badwe S., Stitzel J., Malhotra R., Atre S. Effects of powder attributes and laser powder bed fusion (L-PBF) process conditions on the densification and mechanical properties of 17-4 PH stainless steel. JOM. 2016, vol. 68, no. 3, pp. 860–868. http://doi.org/10.1007/s11837-015-1770-4
17. Zhu H., Tong H., Yang F., Cheng C. Plasma-assisted preparation and characterization of spherical stainless steel powders. Journal of Materials Processing Technology. 2018, vol. 252, pp. 559–566. http://doi.org/10.1016/j.jmatprotec.2017.10.010
18. Ji L., Wang C., Wu W., Tan C., Wang G., Duan X.M. Spheroidization by Plasma processing and characterization of stainless steel powder for 3D printing. Metallurgical and Materials Transactions A. 2017, vol. 48, no. 10, pp. 4831–4841. http://doi.org/10.1007/s11661-017-4240-5
19. Neikov O.D., Gopienko V.G. Production of titanium and titanium alloy powders. In: Handbook of Non-Ferrous Metal Powders. 2019, pp. 549–570. http://doi.org/10.1016/b978-0-08-100543-9.00018-x
20. Yin J.O., Chen G., Zhao S.Y., Ge Y., Li Z.F., Yang P.J., Han W.Z., Wang J., Tang H.P., Cao P. Microstructural characterization and properties of Ti – 28 Ta at. % powders produced by plasma rotat ing electrode process. Journal of Alloys and Compounds. 2017, vol. 713, pp. 222–228. http://doi.org/10.1016/j.jallcom.2017.04.195
21. Entezarian M., Allaire F., Tsantrizos P., Drew R.A.L. Plasma atomi zation: A new process for the production of fine, spherical powders. JOM. 1996, vol. 48, no. 6, pp. 53–55. http://doi.org/10.1007/BF03222969
22. Sun P., Fang Z.Z., Zhang Y., Xia Y. Review of the methods for pro duction of spherical Ti and Ti alloy powder. JOM. 2017, vol. 69, no. 10, pp. 1853–1860. http://doi.org/10.1007/s11837-017-2513-5
23. Vostrikov A.V., Sukhov D.I. Prep pellet production for additive technologies – Current status and development prospects. Trudy VIAM. 2016, no. 8(44), рр. 1–3. (In Russ.)
24. Kirsankin A.A., Kalaida T.A., Kaplan M.A., Smirnov M.A., Ivan nikov A.Yu., Sevostyanov M.A. Characterization of spherical stainless steel powders prepared by electric arc spraying process. IOP Conference Series: Materials Science and Engineering. 2020, vol. 848, no. 1, article 012033. http://doi.org/10.1088/1757-899X/848/1/012033
25. Ivannikov A.Yu., Kirsankin A.A., Kalayda T.A., Sevostyanov M.A. Research and development of the inert gas atomization of the wire by means of arc spraying. IOP Conference Series: Materials Science and Engineering. 2020, vol. 848, no. 1, article 012111. http://doi.org/10.1088/1757-899X/848/1/012111 26. Nie Y., Tang J., Yang B., Lei Q., Yu S., Li Y. Comparison in charac teristic and atomization behavior of metallic powders produced by plasma rotating electrode process. Advanced Powder Technology. 2020, vol. 31, no. 5, pp. 2152–2160. http://doi.org/10.1016/j.apt.2020.03.006
26. Nie Y., Tang J., Teng J., Ye X., Yang B., Huang J., Yu S., Li Y. Par ticle defects and related properties of metallic powders produced by plasma rotating electrode process. Advanced Powder Technology. 2020, vol. 31, no. 7, pp. 2912–2920. http://doi.org/10.1016/j.apt.2020.05.018
27. Samal S. Thermal plasma technology: The prospective future in material processing. Journal of Cleaner Production. 2017, vol. 142, part 4, pp. 3131–3150. http://doi.org/10.1016/j.jclepro.2016.10.154
28. Wisutmethangoon S., Plookphol T., Sungkhaphaitoon P. Production of SAC305 powder by ultrasonic atomization. Powder Technology. 2011, vol. 209, no. 1–3, pp. 105–111. http://doi.org/10.1016/j.powtec.2011.02.016
29. Alavi S.H., Harimkar S.P. Ultrasonic vibration-assisted laser atomization of stainless steel. Powder Technology. 2017, vol. 321, pp. 89–93. http://doi.org/10.1016/j.powtec.2017.08.007
30. Dunkley J.J. Advances in atomisation techniques for the formation of metal powders. Advances in Powder Metallurgy: Properties, Pro cessing and Applications. 2013, pp. 3–18. http://doi.org/10.1533/9780857098900.1.3
31. Antony L.V.M., Reddy R.G. Processes for production of high-purity metal powders. JOM. 2003, vol. 55, no. 3, pp. 14–18. http://doi.org/10.1007/s11837-003-0153-4
32. Riabov D., Hryha E., Rashidi M., Bengtsson S., Nyborg L. Effect of atomization on surface oxide composition in 316L stainless steel powders for additive manufacturing. Surface and Interface Analysis. 2020, vol. 52, no. 11, pp. 694–706. http://doi.org/10.1002/sia.6846
33. Niaki M.K., Torabi S.A., Nonino F. Why manufacturers adopt additive manufacturing technologies: The role of sustainability. Journal of Cleaner Production. 2019, vol. 222, pp. 381–392. http://doi.org/10.1016/j.jclepro.2019.03.019
34. Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T.Q., Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering. 2018, vol. 143, pp. 172–196. http://doi.org/10.1016/j.compositesb.2018.02.012
35. Standard terminology for additive manufacturing technologies. ASTM International F2792-12a. 2012, рр. 1–3. http://doi.org/10.1520/F2792-12A
36. GOST R 57589-2017 Additive technological processes. Basic principles – part 2. Materials for additive manufacturing processes. General requirements. (In Russ.).
37. DebRoy T., Wei H.L., Zuback J.S., Mukherjee T., Elmer J.W., Milewski J.O., Beese A.M., Wilson-Heid A., De A., Zhang W. Additive manufacturing of metallic components – Process, struc ture and properties. Progress in Materials Science. 2018, vol. 92, pp. 112–224. http://doi.org/10.1016/j.pmatsci.2017.10.001
38. Frazier W.E. Metal additive manufacturing: A review. Journal of Materials Engineering and Performance. 2014, vol. 23, no. 6, pp. 1917–1928. http://doi.org/10.1007/s11665-014-0958-z
39. Herderick E. Additive manufacturing of metals: A review. Materials Science and Technology Conference and Exhibition 2011, MS and T’11. 2011, vol. 2, pp. 1413–1425.
40. Tapia G., Elwany A. A Review on process monitoring and control in metal-based additive manufacturing. Journal of Manufacturing Science and Engineering. 2014, vol. 136, no. 6, article 060801. http://doi.org/10.1115/1.4028540
41. Imran M.K., Masood S.H., Brandt M., Bhattacharya S., Mazum der J. Direct metal deposition (DMD) of H13 tool steel on copper alloy substrate: Evaluation of mechanical properties. Materials Science and Engineering: A. 2011, vol. 528, no. 9, pp. 3342–3349. http://doi.org/10.1016/j.msea.2010.12.099
42. Keist J.S., Palmer T.A. Role of geometry on properties of additively manufactured Ti-6Al-4V structures fabricated using laser based directed energy deposition. Materials & Design. 2016, vol. 106, pp. 482–494. http://doi.org/10.1016/j.matdes.2016.05.045
43. Ma M., Wang Z., Zeng X. Effect of energy input on microstructural evolution of direct laser fabricated IN718 alloy. Materials Characterization. 2015, vol. 106, pp. 420–427. http://doi.org/10.1016/j.matchar.2015.06.027
44. Malukhin K., Ehmann K. Material characterization of NiTi based memory alloys fabricated by the laser direct metal deposition process. Journal of Manufacturing Science and Engineering. 2006, vol. 128, no. 3, pp. 691–696. http://doi.org/10.1115/1.2193553
45. Riza S.H., Masood S.H., Wen C., Ruan D., Xu S. Dynamic beha viour of high strength steel parts developed through laser as sisted direct metal deposition. Materials & Design. 2014, vol. 64, pp. 650–659. http://doi.org/10.1016/j.matdes.2014.08.026
46. Shah K., Pinkerton A.J., Salman A., Li L. Effects of melt pool variables and process parameters in laser direct metal deposition of aerospace alloys. Materials and Manufacturing Processes. 2010, vol. 25, no. 12, pp. 1372–1380. http://doi.org/10.1080/10426914.2010.480999
47. Baufeld B., Brandl E., Van Der Biest O. Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition. Journal of Materials Processing Technology. 2011, vol. 211, no. 6, pp. 1146–1158. http://doi.org/10.1016/j.jmatprotec.2011.01.018
48. Brandl E., Palm F., Michailov V., Viehweger B., Leyens C. Me chanical properties of additive manufactured titanium (Ti-6Al-4V) blocks deposited by a solid-state laser and wire. Materials & De sign. 2011, vol. 32, no. 10, pp. 4665–4675. http://doi.org/10.1016/j.matdes.2011.06.062
49. Brandl E., Schoberth A., Leyens C. Morphology, microstructure, and hardness of titanium (Ti-6Al-4V) blocks deposited by wire-feed additive layer manufacturing (ALM). Materials Science and Engi neering: A. 2012, vol. 532, pp. 295–307. http://doi.org/10.1016/j.msea.2011.10.095
50. Wang T., Zhu Y.Y., Zhang S.Q., Tang H.B., Wang H.M. Grain mor phology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing. Journal of Alloys and Compounds. 2015, vol. 632, pp. 505–513. http://doi.org/10.1016/j.jallcom.2015.01.256
51. Ding D., Pan Z., Cuiuri D., Li H. Wire-feed additive manufacturing of metal components: technologies, developments and future interests. The International Journal of Advanced Manufacturing Tech nology. 2015, vol. 81, no. 1–4, pp. 465–481. http://doi.org/10.1007/s00170-015-7077-3
52. Ding J., Colegrove P., Mehnen J., Ganguly S., Almeida P.M.S., Wang F., Williams S. Thermo-mechanical analysis of Wire and Arc Additive Layer Manufacturing process on large multi-layer parts. Computational Materials Science. 2011, vol. 50, no. 12, pp. 3315–3322. http://doi.org/10.1016/j.commatsci.2011.06.023
53. Williams S.W., Martina F., Addison A.C., Ding J., Pardal G., Cole grove P. Wire + Arc additive manufacturing. Material Science and Technology. 2016, vol. 32, no. 7, pp. 641–647. http://doi.org/10.1179/1743284715Y.0000000073
54. Xiong J., Lei Y., Chen H., Zhang G. Fabrication of inclined thin walled parts in multi-layer single-pass GMAW-based additive manufacturing with flat position deposition. Journal of Materials Processing Technology. 2017, vol. 240, pp. 397–403. http://doi.org/10.1016/j.jmatprotec.2016.10.019
55. Hildreth O.J., Nassar A.R., Chasse K.R., Simpson T.W. Dissolvable metal supports for 3D direct metal printing. 3D Printing and Additive Manufacturing. 2016, vol. 3, no. 2, pp. 91–97. http://doi.org/10.1089/3dp.2016.0013
56. Mekhanik A. Powders get rid of excess. MIC News. 2014. [Electronic resource]. Available at URL: https://vpk.name/news/122336_poroshki_izbavlyayut_ot_lishnego.html (Accessed: 02.09.2021). (In Russ.).
57. Carlota V. The Complete Guide to Directed Energy Deposition (DED) in 3D Printing. 3Dnatives. 2019 [Electronic resource]. Available at URL: https://www.3dnatives.com/en/directed-energy-deposition-ded-3d-printing-guide-100920194/ (Accessed: 02.09.2021).
58. Wright I. Metal Additive Manufacturing for Large Parts. Engineer ing.com [Electronic resource]. 2019. Available at URL: https:// www.engineering.com/story/metal-additive-manufacturing-for large-parts (Accessed: 02.09.2021).
59. Bhavar V., Kattire P., Patil V., Khot S., Gujar K., Singh R. A review on powder bed fusion technology of metal additive manufacturing. Additive Manufacturing Handbook: Product Development for the Defense Industry. 2017, vol. 15, pp. 251–261.
60. Jamshidinia M., Sadek A., Wang W., Kelly S. Additive manufacturing of steel alloys using laser powder-bed fusion. Advanced Mate rials & Processes. 2015, vol. 173, no. 1, pp. 20–24.
61. Kamath C., El-Dasher B., Gallegos G.F., King W.E., Sisto A. Den sity of additively-manufactured, 316L SS parts using laser pow der-bed fusion at powers up to 400 W. The International Journal of Advanced Manufacturing Technology. 2014, vol. 74, no. 1–4, pp. 65–78. http://doi.org/10.1007/s00170-014-5954-9
62. Khairallah S.A., Anderson A.T., Rubenchik A., King W.E. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Materialia. 2016, vol. 108, pp. 36–45. http://doi.org/10.1016/j.actamat.2016.02.014
63. Mower T.M., Long M.J. Mechanical behavior of additive manu factured, powder-bed laser-fused materials. Material Science Engi neering: A. 2016, vol. 651, pp. 198–213. http://doi.org/10.1016/j.msea.2015.10.068
64. Teslenko V. Laser growing of metal parts – the most important area of additive technologies. Kommersant – Science, 2017 [Elec tronic resource]. Available at URL: https://www.kommersant.ru/ amp/3256048 (Accessed: 02.09.2021). (In Russ.).
65. Jiao L., Chua Z.Y., Moon S.K., Song J., Bi G., Zheng H. Femto second laser produced hydrophobic hierarchical structures on additive manufacturing parts. Nanomaterials. 2018, vol. 8, no. 8, pp. 1–10. http://doi.org/10.3390/nano8080601
66. Yadroitsev I., Yadroitsava I. Evaluation of residual stress in stain less steel 316L and Ti6Al4V samples produced by selective laser melting. Virtual and Physical Prototyping. 2015, vol. 10, no. 2, pp. 67–76. http://doi.org/10.1080/17452759.2015.1026045
67. Kurzynowski T., Gruber K., Stopyra W., Kuźnicka B., Chlebus E. Correlation between process parameters, microstructure and properties of 316 L stainless steel processed by selective laser melting. Material Science Engineering: A. 2018, vol. 718, pp. 64–73. http://doi.org/10.1016/j.msea.2018.01.103
68. Leuders S., Thöne M., Riemer A., Niendorf T., Tröster T., Rich ard H.A., Maier H.J. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue re sistance and crack growth performance. International Journal of Fatigue. 2013, vol. 48, pp. 300–307. http://doi.org/10.1016/j.ijfatigue.2012.11.011
69. Yasa E., Kruth J.P. Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting. Pro cedia Engineering. 2011, vol. 19, pp. 389–395. http://doi.org/10.1016/j.proeng.2011.11.130
70. Spierings A.B., Starr T.L., Wegener K. Fatigue performance of addi tive manufactured metallic parts. Rapid Prototyping Journal. 2013, vol. 19, no. 2, pp. 88–94.http://doi.org/10.1108/13552541311302932
71. Mazzoli A. Selective laser sintering in biomedical engineering. Medical & Biological Engineering & Computing. 2013, vol. 51, no. 3, pp. 245–256. http://doi.org/10.1007/s11517-012-1001-x
72. Dehoff R.R., Babu S.S. Characterization of interfacial microstructures in 3003 aluminum alloy blocks fabricated by ultrasonic ad ditive manufacturing. Acta Materialia. 2010, vol. 58, no. 13, pp. 4305–4315. http://doi.org/10.1016/j.actamat.2010.03.006
73. Ram G.D.J., Robinson C., Yang Y., Stucker B.E. Use of ultrasonic consolidation for fabrication of multi-material structures. Rapid Prototyping Journal. 2007, vol. 13, no. 4, pp. 226–235. http://doi.org/10.1108/13552540710776179
74. Technologies of Additive Manufacturing [Electronic resource]. Available at URL: https://slide-share.ru/tekhnologii-additivnogo proizvodstvaiskhodnaya-model-additivnij-process-122962 (Acces sed: 02.09.2021). (In Russ.).
75. Meteyer S., Xu X., Perry N., Zhao Y.F. Energy and material flow analysis of binder-jetting additive manufacturing processes. Procedia CIRP. 2014, vol. 15, pp. 19–25. http://doi.org/10.1016/j.procir.2014.06.030
76. Binder Jetting. Additive Manufacturing Research Group | Lough borough University [Electronic resource]. Available at URL: https:// www.lboro.ac.uk/research/amrg/about/the7categoriesofadditive manufacturing/binderjetting/ (Accessed: 02.09.2021).
77. 3D Printing Technologies. 2017 [Electronic resource]. Available at URL: https://tp3d.ru/index.php?route=record/record&record_id=37 (Accessed: 02.09.2021). (In Russ.).
78. Murr L.E., Gaytan S.M., Martinez E., Medina F., Wicker R.B. Next generation orthopaedic implants by additive manufacturing using electron beam melting. International Journal of Biomaterials. 2012, vol. 2012, article 245727. http://doi.org/10.1155/2012/245727
79. Justin D.F., etc. Laser based metal deposition (LBMD) of antimicrobials to implant surfaces: patent 7951412 USA. 2011.
80. Karlsson J., Snis A., Engqvist H., Lausmaa J. Characterization and comparison of materials produced by electron beam melting (EBM) of two different Ti-6Al-4V powder fractions. Journal of Materials Processing Technology. 2013, vol. 213, no. 12, pp. 2109–2118. http://doi.org/10.1016/j.jmatprotec.2013.06.010
81. Zhao X., Chen J., Lin X., Huang W. Study on microstructure and mechanical properties of laser rapid forming Inconel 718. Materials Science and Engineering: A. 2008, vol. 478, no. 1–2, pp. 119–124. http://doi.org/10.1016/j.msea.2007.05.079
82. Sames W.J., List F.A., Pannala S., Dehoff R.R., Babu S.S. The metallurgy and processing science of metal additive manufacturing. International Materials Reviews. 2016, vol. 61, no. 5, pp. 315–360. http://doi.org/10.1080/09506608.2015.1116649
83. GOST R 51761-2005. Aluminosilicate proppants. Technical condi tions. 2006, 31 р. (In Russ.).
84. Sovetnikov E.I. Assessment of additive technologies development. Tekhnologiya legkikh splavov. 2015, no. 3, pp. 17–31. (In Russ.).
85. Slotwinski J.A., Garboczi E.J., Stutzman P.E., Ferraris C.F., Watson S.S., Peltz M.A. Characterization of metal powders used for ad ditive manufacturing. Journal of Research of the National Institute of Standards and Technology. 2014, vol. 119, pp. 460‒493. http://doi.org/10.6028/jres.119.018
86. GOST 19440-94 Metallic powders. Determination of bulk density. Part 1. Method with a funnel. Part 2. Scott’s volumeter method. (In Russ.). 88. GOST 20899-98 (ISO 4490-78) Metallic powders. Determination of fluidity using a calibrated funnel (Hall device). (In Russ.).
87. Herzog D., Seyda V., Wycisk E., Emmelmann C. Additive manufacturing of metals. Acta Materialia. 2016, vol. 117, pp. 371–392. http://doi.org/10.1016/j.actamat.2016.07.019
88. Kablov E.N. Trends and Guidelines for Innovative Development in Russia. VIAM, 2015, 557 p.
89. Kablov E.N.Additive technologies – dominant feature of national technological initiative. Intellekt i tekhnologii. 2015, vol. 2, no. 11, pp. 52–55. (In Russ.).
90. Hassanin H., Elshaer A., Benhadj-Djilali R., Modica F., Fassi I. Surface finish improvement of additive manufactured metal parts. Micro and Precision Manufacturing. 2018, pp. 145–164. http://doi.org/10.1007/978-3-319-68801-5_7
91. Beiderbeck D., Deradjat D., Minshall T. The Impact of Additive Manufacturing Technologies on Industrial Spare Parts Strategies. 2018, 57 p.
92. Li Y., Jia G., Cheng Y., Hu Y. Additive manufacturing technology in spare parts supply chain: A comparative study. International Journal of Production Research. 2017, vol. 55, no. 5, pp. 1498–1515. http://doi.org/10.1080/00207543.2016.1231433
93. Ziółkowski M., Dyl T. Possible applications of additive manufactur ing technologies in shipbuilding: A review. Machines. 2020, vol. 8, no. 4, pp. 1–34. http://doi.org/10.3390/machines8040084
94. Oryshchenko A.S., Gorynin I.V., Kuznetsov P.A., Telenkov A.I., Savin V.I., Bobyr’ V.V Additive technologies based on composite powder materials. Additivnye tekhnologii v rossiiskoi promyshlen nosti. 2015, pp. 1–22. (In Russ.).
95. Bajaj P., Hariharan A., Kini A., Kürnsteiner P., Raabe D., Jägle E.A. Steels in additive manufacturing: A review of their microstruc ture and properties. Materials Science and Engineering: A. 2020, vol. 772, article 138633. http://doi.org/10.1016/j.msea.2019.138633
96. Wang Z., Palmer T.A., Beese A.M. Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing. Acta Materialia. 2016, vol. 110, pp. 226–235. http://doi.org/10.1016/j.actamat.2016.03.019
97. Sun Z., Tan X., Tor S.B., Yeong W.Y. Selective laser melting of stainless steel 316L with low porosity and high build rates. Materials & Design. 2016, vol. 104, pp. 197–204. http://doi.org/10.1016/j.matdes.2016.05.035
98. Saeidi K., Kevetkova L., Lofaj F., Shen Z. Novel ferritic stainless steel formed by laser melting from duplex stainless steel powder with advanced mechanical properties and high ductility. Materials Science and Engineering: A. 2016, vol. 665, pp. 59–65. http://doi.org/10.1016/j.msea.2016.04.027
99. Rafi H.K., Pal D., Patil N., Starr T.L., Stucker B.E. Microstructure and mechanical behavior of 17-4 precipitation hardenable steel processed by selective laser melting. Journal of Materials Engineering and Performance. 2014, vol. 23, no. 12. , pp. 4421–4428. http://doi.org/10.1007/s11665-014-1226-y
100. Röttger A., Geenen K., Windmann M., Binner F., Theisen W. Com parison of microstructure and mechanical properties of 316 L austenitic steel processed by selective laser melting with hot-isostatic pressed and cast material. Materials Science and Engineering: A. 2016, vol. 678, pp. 365–376. http://doi.org/10.1016/j.msea.2016.10.012
101. Ziętala M., Durejko T., Polański M., Kunce I., Płociński T., Zieliński W., Łazińska M., Stępniowski W., Czujko T., Kurzydłowski K.J., Bojar Z. The microstructure, mechanical properties and corrosion resistance of 316 L stainless steel fabricated using laser engineered net shaping. Materials Science and Engineering: A. 2016, vol. 677, pp. 1–10. http://doi.org/10.1016/j.msea.2016.09.028
102. Abd-Elghany K., Bourell D.L. Property evaluation of 304L stainless steel fabricated by selective laser melting. Rapid Prototyping Jour nal. 2012, vol. 18, no. 5, pp. 420–428. http://doi.org/10.1108/13552541211250418
103. Wu J.H., Lin C.K. Influence of high temperature exposure on the mechanical behavior and microstructure of 17-4 PH stainless steel. Journal of Materials Science. 2003, vol. 38, no. 5, pp. 965–971. http://doi.org/10.1023/A:1022377225704
104. Ning F., Cong W. Microstructures and mechanical properties of Fe-Cr stainless steel parts fabricated by ultrasonic vibration-assist ed laser engineered net shaping process. Materials Letters. 2016, vol. 179, pp. 61–64. http://doi.org/10.1016/j.matlet.2016.05.055
105. LeBrun T., Nakamoto T., Horikawa K., Kobayashi H. Effect of re tained austenite on subsequent thermal processing and resultant me chanical properties of selective laser melted 17-4 PH stainless steel. Materials & Design. 2015, vol. 81, pp. 44–53. http://doi.org/10.1016/j.matdes.2015.05.026
106. Sander G., Babu A.P., Gao X., Jiang D., Birbilis N. On the effect of build orientation and residual stress on the corrosion of 316L stain less steel prepared by selective laser melting. Corrosion Science. 2021, vol. 179, article 109149. http://doi.org/10.1016/j.corsci.2020.109149
107. Melia M.A., Nguyen H.D.A., Rodelas J.M., Schindelholz E.J. Cor rosion properties of 304L stainless steel made by directed energy deposition additive manufacturing. Corrosion Science. 2019, vol. 152, pp. 20–30. http://doi.org/10.1016/j.corsci.2019.02.029
108. Shahriari A., Khaksar L., Nasiri A., Hadadzadeh A., Amirkhiz B.S., Mohammadi M. Microstructure and corrosion behavior of a novel additively manufactured maraging stainless steel. Electrochimica Acta. 2020, vol. 339, article 135925. http://doi.org/10.1016/j.electacta.2020.135925
109. Wang L., Dong C., Man C., Kong D., Xiao K., Li X. Enhancing the corrosion resistance of selective laser melted 15-5PH martensite stainless steel via heat treatment. Corrosion Science. 2020, vol. 166, article 108427. http://doi.org/10.1016/j.corsci.2019.108427
110. Barroux A., Ducommun N., Nivet E., Laffont L., Blanc C. Pitting corrosion of 17-4PH stainless steel manufactured by laser beam melting. Corrosion Science. 2020, vol. 169, article 108594. http://doi.org/10.1016/j.corsci.2020.108594
111. Alvi S., Saeidi K., Akhtar F. High temperature tribology and wear of selective laser melted (SLM) 316L stainless steel. Wear. 2020, vol. 448–449, article 203228. http://doi.org/10.1016/j.wear.2020.203228
112. Lashgari H.R., Xue Y., Onggowarsito C., Kong C., Li S. Microstructure, tribological properties and corrosion behaviour of additively manufactured 17-4PH stainless steel: Effects of scanning pattern, build orientation, and single vs. double scan. Materials Today Communications. 2020, vol. 25, article 101535. http://doi.org/10.1016/j.mtcomm.2020.101535
113. Sanjeev K.C., Nezhadfar P.D., Phillips C., Kennedy M.S., Shamsaei N., Jackson R.L. Tribological behavior of 17–4 PH stainless steel fabricated by traditional manufacturing and laser-based additive manufacturing methods. Wear. 2019, vol. 440–441, article 203100. http://doi.org/10.1016/j.wear.2019.203100
Review
For citations:
Kolmakov А.G., Ivannikov А.Yu., Kaplan М.А., Kirsankin А.А., Sevost’yanov М.A. Коррозионностойкие стали в аддитивном производстве. Izvestiya. Ferrous Metallurgy. 2021;64(9):619-650. (In Russ.) https://doi.org/10.17073/0368-0797-2021-9-619-650