Коррозионностойкие стали в аддитивном производстве
https://doi.org/10.17073/0368-0797-2021-9-619-650
Аннотация
В данном обзоре рассмотрены основные методы получения сферических частиц порошка коррозионностойких сталей как материала, широко применяемого во всех отраслях промышленности. Также приведены примеры изделий, изготовленных современными аддитивными методами. В настоящее время сферические частицы порошка коррозионностойких сталей используются в следующих аддитивных методах: селективное лазерное плавление, селективное лазерное спекание, прямое лазерное спекание и электронно-лучевая плавка. Каждый из этих методов предъявляет свои требования к характеристикам сферических частиц порошка коррозионностойких сталей. В обзоре приведено краткое описание принципов работы каждого метода и требования, которые предъявляются к сферическим частицам порошка коррозионностойких сталей. Дано подробное описание каждого метода аддитивного производства с описанием принципа работы и конкретными примерами получения сферических частиц порошков коррозионностойких сталей с указанием их свойств (морфология, структурные особенности, химический состав, текучесть, насыпная плотность). Проведен сравнительный анализ с описанием недостатков и преимуществ каждого из методов. В конце обзора приведены примеры использования сферических частиц порошков коррозионностойких сталей для изготовления изделий различными аддитивными методами (включая постобработку) с описанием характеристик конечных изделий. На основе приведенных данных сделан вывод о предпочтительных методах получения сферических частиц порошков коррозионностойких сталей для конкретных аддитивных методов, используемых в современной промышленности. В обзоре рассмотрены следующие методы получения сферических частиц порошков: водная атомизация (распыление жидкого металла струей воды под давлением); газовая атомизация (распыление расплава струей инертного газа (аргона или азота) под давлением); центробежная атомизация (распыление расплавленного металла высокоскоростным вращающимся диском); ультразвуковая атомизация (распыление жидкого металла ультразвуком); бесконтактная атомизация (распыление жидкого металла мощным импульсом электрического тока); плазменное распыление проволоки; плазменное распыление вращающегося электрода; плазменная сфероидизация.
Об авторах
А. Г. КолмаковРоссия
Алексей Георгиевич Колмаков, член-корреспондент РАН, д.т.н.,
заведующий лабораторией
119991, Москва, Ленинский пр. 49
А. Ю. Иванников
Россия
Александр Юрьевич Иванников, к.т.н., старший научный сотрудник
119991, Москва, Ленинский пр. 49
М. А. Каплан
Россия
Михаил Александрович Каплан, младший научный сотрудник
119991, Москва, Ленинский пр. 49
А. А. Кирсанкин
Россия
Андрей Александрович Кирсанкин, к.ф-м.н, старший научный сотрудник
119991, Москва, Ленинский пр. 49
М. А. Севостьянов
Россия
Михаил Анатольевич Севостьянов, к.т.н, ведущий научный сотрудник
119991, Москва, Ленинский пр. 49
Список литературы
1. Benarji K., Ravi Kumar Y., Jinoop A.N., Paul C.P., Bindra K.S. Effect of heat-treatment on the microstructure, mechanical properties and corrosion behaviour of SS 316 structures built by laser directed energy deposition based additive manufacturing // Metals and Mate rials International. 2021. Vol. 27. No. 3. P. 488–499. http://doi.org/10.1007/s12540-020-00838-y
2. Tascioglu E., Karabulut Y., Kaynak Y. Influence of heat treatment temperature on the microstructural, mechanical, and wear behavior of 316L stainless steel fabricated by laser powder bed additive manufacturing // The International Journal of Advanced Manufacturing Technology. 2020. Vol. 107. No. 5–6. P. 1947–1956. http://doi.org/10.1007/s00170-020-04972-0
3. Jeyaprakash N., Yang C.H., Ramkumar K.R. Correlation of microstructural evolution with mechanical and tribological behaviour of SS 304 specimens developed through SLM technique // Metals and Materials International. 2021. P. 1–12. http://doi.org/10.1007/s12540-020-00933-0
4. Shin W.S., Son B., Song W., Sohn H., Jang H., Kim Y.J., Park C. Heat treatment effect on the microstructure, mechanical properties, and wear behaviors of stainless steel 316L prepared via selective la ser melting // Materials Science and Engineering: A. 2021. Vol. 806. Article 140805. http://doi.org/10.1016/j.msea.2021.140805
5. Богачев И.А., Сульянова Е.А., Сухов Д.И., Мазалов П.Б. Исследование микроструктуры и свойств коррозионностойкой стали системы Fe–Cr–Ni, полученной методом селективного лазерно го сплавления // Труды ВИАМ. 2019. № 3(75). С. 3–13.
6. Jing G., Wang Z. Defects, densification mechanism and mechanical properties of 300M steel deposited by high power selective laser melting // Additive Manufacturing. 2021. Vol. 38. Article 101831. http://doi.org/10.1016/j.addma.2020.101831
7. Nigon G.N., Burkan Isgor O., Pasebani S. The effect of annealing on the selective laser melting of 2205 duplex stainless steel: Micro structure, grain orientation, and manufacturing challenges // Optics & Laser Technology. 2021. Vol. 134. Article 106643. http://doi.org/10.1016/j.optlastec.2020.106643
8. Cui C., Uhlenwinkel V., Schulz A., Zoch H.W. Austenitic stainless steel powders with increased nitrogen content for laser additive manufacturing // Metals. 2020. Vol. 10. No. 1. Article 61. http://doi.org/10.3390/met10010061 9. Uhlenwinkel V., Achelis L., Sheikhaliev S., Lagutkine S. A new technique for molten metal atomization // Proceedings ICLASS. 2003. P. 1–8.
9. Lagutkin S., Achelis L., Sheikhaliev S., Uhlenwinkel V., Srivas tava V. Atomization process for metal powder // Materials Science and Engineering: A. 2004. Vol. 383. No. 1. P. 1–6. http://doi.org/10.1016/j.msea.2004.02.059
10. Zepon G., Ellendt N., Uhlenwinkel V., Henein H. Processing as pects in spray forming // Metal Sprays and Spray Deposition. 2017. P. 297–348. http://doi.org/10.1007/978-3-319-52689-8_8
11. Chen Y., Xiao Z., Zou H., Li S., Li A. Preparation and characteri zation of fine 316l stainless steel powders prepared by gas atomiza tion // High Performance Structural Materials. 2018. P. 25–34. http://doi.org/10.1007/978-981-13-0104-9_4
12. Hoeges S., Zwiren A., Schade C. Additive manufacturing using water atomized steel powders // Metal Powder Report. 2017. Vol. 72. No. 2. P. 111‒117. http://doi.org/10.1016/j.mprp.2017.01.004
13. Jiao Z., Li D., Asgarian A., Chatterjee S., Girard B., Paserin V., La vallee F., Chattopadhyay K. Influence of apex angle and nozzle design on energy and momentum transfer during the water atomization process // POWDERMET 2017. 2017. P. 127‒137.
14. Li R., Shi Y., Wang Z., Wang L., Liu J., Jiang W. Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting // Applied Surface Science. 2010. Vol. 256. No. 13. P. 4350–4356. http://doi.org/10.1016/j.apsusc.2010.02.030
15. Irrinki H., Dexter M., Barmore B., Enneti R., Pasebani S., Badwe S., Stitzel J., Malhotra R., Atre S. Effects of powder attributes and laser powder bed fusion (L-PBF) process conditions on the densification and mechanical properties of 17-4 PH stainless steel // JOM. 2016. Vol. 68. No. 3. P. 860–868. http://doi.org/10.1007/s11837-015-1770-4
16. Zhu H., Tong H., Yang F., Cheng C. Plasma-assisted preparation and characterization of spherical stainless steel powders // Journal of Materials Processing Technology. 2018. Vol. 252. P. 559–566. http://doi.org/10.1016/j.jmatprotec.2017.10.010
17. Ji L., Wang C., Wu W., Tan C., Wang G., Duan X.M. Spheroidiza tion by Plasma processing and characterization of stainless steel powder for 3D printing // Metallurgical and Materials Transactions A. 2017. Vol. 48. No. 10. P. 4831–4841. http://doi.org/10.1007/s11661-017-4240-5
18. Neikov O.D., Gopienko V.G. Production of titanium and titanium alloy powders // Handbook of Non-Ferrous Metal Powders. 2019. P. 549–570. http://doi.org/10.1016/b978-0-08-100543-9.00018-x
19. Yin J.O., Chen G., Zhao S.Y., Ge Y., Li Z.F., Yang P.J., Han W.Z., Wang J., Tang H.P., Cao P. Microstructural characterization and properties of Ti – 28 Ta at. % powders produced by plasma rotat ing electrode process // Journal of Alloys and Compounds. 2017. Vol. 713. P. 222–228. http://doi.org/10.1016/j.jallcom.2017.04.195
20. Entezarian M., Allaire F., Tsantrizos P., Drew R.A.L. Plasma at omization: A new process for the production of fine, spherical pow ders // JOM. 1996. Vol. 48. No. 6. P. 53–55. http://doi.org/10.1007/BF03222969
21. Sun P., Fang Z.Z., Zhang Y., Xia Y. Review of the methods for pro duction of spherical Ti and Ti alloy powder // JOM. 2017. Vol. 69. No. 10. P. 1853–1860. http://doi.org/10.1007/s11837-017-2513-5
22. Востриков А.В., Сухов Д. И. Производство гранул методом prep для аддитивных технологий – текущий статус и перспективы развития // Труды ВИАМ. 2016. № 8 (44). С. 1‒3.
23. Kirsankin A.A., Kalaida T.A., Kaplan M.A., Smirnov M.A., Ivan nikov A., Sevostyanov M.A. Characterization of spherical stainless steel powders prepared by electric arc spraying process // IOP Con ference Series: Materials Science and Engineering. 2020. Vol. 848. No. 1. Article 012033. http://doi.org/10.1088/1757-899X/848/1/012033
24. Ivannikov A.Yu., Kirsankin A.A., Kalayda T.A., Sevostyanov M.A. Research and development of the inert gas atomization of the wire by means of arc spraying // IOP Conference Series: Materials Sci ence and Engineering. 2020. Vol. 848. No. 1. Article 012111. http://doi.org/10.1088/1757-899X/848/1/012111
25. Nie Y., Tang J., Yang B., Lei Q., Yu S., Li Y. Comparison in charac teristic and atomization behavior of metallic powders produced by plasma rotating electrode process // Advanced Powder Technology. 2020. Vol. 31. No. 5. P. 2152–2160. http://doi.org/10.1016/j.apt.2020.03.006
26. Nie Y., Tang J., Teng J., Ye X., Yang B., Huang J., Yu S., Li Y. Par ticle defects and related properties of metallic powders produced by plasma rotating electrode process // Advanced Powder Technology. 2020. Vol. 31. No. 7. P. 2912–2920. http://doi.org/10.1016/j.apt.2020.05.018
27. Samal S. Thermal plasma technology: The prospective future in ma terial processing // Journal of Cleaner Production. 2017. Vol. 142. Part 4. P. 3131–3150. http://doi.org/10.1016/j.jclepro.2016.10.154
28. Wisutmethangoon S., Plookphol T., Sungkhaphaitoon P. Production of SAC305 powder by ultrasonic atomization // Powder Technology. 2011. Vol. 209. No. 1–3. P. 105–111. http://doi.org/10.1016/j.powtec.2011.02.016
29. Alavi S.H., Harimkar S.P. Ultrasonic vibration-assisted laser ato mization of stainless steel // Powder Technology. 2017. Vol. 321. P. 89–93. http://doi.org/10.1016/j.powtec.2017.08.007
30. Dunkley J.J. Advances in atomisation techniques for the formation of metal powders // Advances in Powder Metallurgy: Properties, Processing and Applications. 2013. P. 3–18. http://doi.org/10.1533/9780857098900.1.3
31. Antony L.V.M., Reddy R.G. Processes for production of high-purity metal powders // JOM. 2003. Vol. 55. No. 3. P. 14–18. http://doi.org/10.1007/s11837-003-0153-4
32. Riabov D., Hryha E., Rashidi M., Bengtsson S., Nyborg L. Effect of atomization on surface oxide composition in 316L stainless steel powders for additive manufacturing // Surface and Interface Analy sis. 2020. Vol. 52. No. 11. P. 694–706. http://doi.org/10.1002/sia.6846
33. Niaki M.K., Torabi S.A., Nonino F. Why manufacturers adopt additive manufacturing technologies: The role of sustainability // Journal of Cleaner Production. 2019. Vol. 222. P. 381–392. http://doi.org/10.1016/j.jclepro.2019.03.019
34. Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T.Q., Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges // Composites Part B: Engineering. 2018. Vol. 143. P. 172–196. http://doi.org/10.1016/j.compositesb.2018.02.012
35. Standard terminology for additive manufacturing technologies // ASTM International F2792-12a. 2012. P. 1–3. http://doi.org/10.1520/F2792-12A
36. ГОСТ Р 57589-2017 Аддитивные технологические процессы. Базовые принципы – часть 2. Материалы для аддитивных технологических процессов. Общие требования.
37. DebRoy T., Wei H.L., Zuback J.S., Mukherjee T., Elmer J.W., Milewski J.O., Beese A.M., Wilson-Heid A., De A., Zhang W. Additive manufacturing of metallic components – Process, structure and properties // Progress in Materials Science. 2018. Vol. 92. P. 112–224. http://doi.org/10.1016/j.pmatsci.2017.10.001
38. Frazier W.E. Metal additive manufacturing: A review // Journal of Materials Engineering and Performance. 2014. Vol. 23. No. 6. P. 1917–1928. http://doi.org/10.1007/s11665-014-0958-z
39. Herderick E. Additive manufacturing of metals: A review // Materials Science and Technology Conference and Exhibition 2011, MS and T’11. 2011. Vol. 2. P. 1413–1425.
40. Tapia G., Elwany A. A Review on process monitoring and control in metal-based additive manufacturing // Journal of Manufacturing Science and Engineering. 2014. Vol. 136. No. 6. Article 060801. http://doi.org/10.1115/1.4028540
41. Imran M.K., Masood S.H., Brandt M., Bhattacharya S., Mazumder J. Direct metal deposition (DMD) of H13 tool steel on copper alloy substrate: Evaluation of mechanical properties // Materials Science and Engineering: A. 2011. Vol. 528. No. 9. P. 3342–3349. http://doi.org/10.1016/j.msea.2010.12.099
42. Keist J.S., Palmer T.A. Role of geometry on properties of additively manufactured Ti-6Al-4V structures fabricated using laser based directed energy deposition // Materials & Design. 2016. Vol. 106. P. 482–494. http://doi.org/10.1016/j.matdes.2016.05.045
43. Ma M., Wang Z., Zeng X. Effect of energy input on microstructural evolution of direct laser fabricated IN718 alloy // Materials Characterization. 2015. Vol. 106. P. 420–427. http://doi.org/10.1016/j.matchar.2015.06.027
44. Malukhin K., Ehmann K. Material characterization of NiTi based memory alloys fabricated by the laser direct metal deposition pro cess // Journal of Manufacturing Science and Engineering, 2006. Vol. 128. No. 3. P. 691–696. http://doi.org/10.1115/1.2193553
45. Riza S.H., Masood S.H., Wen C., Ruan D., Xu S. Dynamic behaviour of high strength steel parts developed through laser assisted direct metal deposition // Materials & Design. 2014. Vol. 64. P. 650–659. http://doi.org/10.1016/j.matdes.2014.08.026
46. Shah K., Pinkerton A.J., Salman A., Li L. Effects of melt pool variables and process parameters in laser direct metal deposition of aerospace alloys // Materials and Manufacturing Processes. 2010. Vol. 25. No. 12. P. 1372–1380. http://doi.org/10.1080/10426914.2010.480999
47. Baufeld B., Brandl E., Van Der Biest O. Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition // Journal of Materials Processing Technology. 2011. Vol. 211. No. 6. P. 1146–1158. http://doi.org/10.1016/j.jmatprotec.2011.01.018
48. Brandl E., Palm F., Michailov V., Viehweger B., Leyens C. Me chanical properties of additive manufactured titanium (Ti-6Al-4V) blocks deposited by a solid-state laser and wire // Materials & De sign. 2011. Vol. 32. No. 10. P. 4665–4675. http://doi.org/10.1016/j.matdes.2011.06.062
49. Brandl E., Schoberth A., Leyens C. Morphology, microstructure, and hardness of titanium (Ti-6Al-4V) blocks deposited by wire-feed additive layer manufacturing (ALM) // Materials Science and Engi neering: A. 2012. Vol. 532. P. 295–307. http://doi.org/10.1016/j.msea.2011.10.095
50. Wang T., Zhu Y.Y., Zhang S.Q., Tang H.B., Wang H.M. Grain mor phology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing // Journal of Alloys and Compounds. 2015. Vol. 632. P. 505–513. http://doi.org/10.1016/j.jallcom.2015.01.256
51. Ding D., Pan Z., Cuiuri D., Li H. Wire-feed additive manufacturing of metal components: technologies, developments and future interests // The International Journal of Advanced Manufacturing Tech nology. 2015. Vol. 81. No. 1–4. P. 465–481. http://doi.org/10.1007/s00170-015-7077-3
52. Ding J., Colegrove P., Mehnen J., Ganguly S., Almeida P.M.S., Wang F., Williams S. Thermo-mechanical analysis of Wire and Arc Additive Layer Manufacturing process on large multi-layer parts // Computational Materials Science. 2011. Vol. 50. No. 12. P. 3315–3322. http://doi.org/10.1016/j.commatsci.2011.06.023
53. Williams S.W., Martina F., Addison A.C., Ding J., Pardal G., Colegrove P. Wire + Arc additive manufacturing // Material Science and Technology. 2016. Vol. 32. No. 7. P. 641–647. http://doi.org/10.1179/1743284715Y.0000000073
54. Xiong J., Lei Y., Chen H., Zhang G. Fabrication of inclined thin walled parts in multi-layer single-pass GMAW-based additive manufacturing with flat position deposition // Journal of Materials Processing Technology. 2017. Vol. 240. P. 397–403. http://doi.org/10.1016/j.jmatprotec.2016.10.019
55. Hildreth O.J., Nassar A.R., Chasse K.R., Simpson T.W. Dissolvable metal supports for 3D direct metal printing // 3D Printing and Additive Manufacturing. 2016. Vol. 3. No. 2. P. 91–97. http://doi.org/10.1089/3dp.2016.0013
56. Механик А. Порошки избавляют от лишнего // Новости ВПК [Электронный ресурс]. 2014. URL: https://vpk.name/ news/122336_poroshki_izbavlyayut_ot_lishnego.html (дата обращения: 02.09.2021).
57. Carlota V. The Complete Guide to Directed Energy Deposition (DED) in 3D Printing // 3Dnatives [Electronic resource]. 2019. URL: https://www.3dnatives.com/en/directed-energy-deposition ded-3d-printing-guide-100920194/ (accessed: 02.09.2021).
58. Wright I. Metal Additive Manufacturing for Large Parts // Engineering.com [Electronic resource]. 2019. URL: https://www.engineering.com/story/metal-additive-manufacturing-for-large-parts (accessed: 02.06.2021).
59. Bhavar V., Kattire P., Patil V., Khot S., Gujar K., Singh R. A review on powder bed fusion technology of metal additive manufacturing // Additive Manufacturing Handbook: Product Development for the Defense Industry. 2017. Vol. 15. P. 251–261.
60. Jamshidinia M., Sadek A., Wang W., Kelly S. Additive manufacturing of steel alloys using laser powder-bed fusion // Advanced Materials & Processes. 2015. Vol. 173. No. 1. P. 20–24.
61. Kamath C., El-Dasher B., Gallegos G.F., King W.E., Sisto A. Density of additively-manufactured, 316L SS parts using laser powderbed fusion at powers up to 400 W // The International Journal of Advanced Manufacturing Technology. 2014. Vol. 74. No. 1–4. P. 65–78. http://doi.org/10.1007/s00170-014-5954-9
62. Khairallah S.A., Anderson A.T., Rubenchik A., King W.E. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denuda tion zones // Acta Materialia. 2016. Vol. 108. P. 36–45. http://doi.org/10.1016/j.actamat.2016.02.014
63. Mower T.M., Long M.J. Mechanical behavior of additive manufactured, powder-bed laser-fused materials // Material Science Engineering: A. 2016. Vol. 651. P. 198–213. http://doi.org/10.1016/j.msea.2015.10.068
64. Тесленко В. Лазерное выращивание металлических деталей – важнейшее направление аддитивных технологий // Коммерсантъ – Наука [Электронный ресурс]. 2017. URL: https://www. kommersant.ru/amp/3256048 (дата обращения: 02.09.2021).
65. Jiao L., Chua Z.Y., Moon S.K., Song J., Bi G., Zheng H. Femtosecond laser produced hydrophobic hierarchical structures on additive manufacturing parts // Nanomaterials. 2018. Vol. 8. No. 8. P. 1–10. http://doi.org/10.3390/nano8080601
66. Yadroitsev I., Yadroitsava I. Evaluation of residual stress in stain less steel 316L and Ti6Al4V samples produced by selective laser melting // Virtual and Physical Prototyping. 2015. Vol. 10. No. 2. P. 67–76. http://doi.org/10.1080/17452759.2015.1026045
67. Kurzynowski T., Gruber K., Stopyra W., Kuźnicka B., Chlebus E. Correlation between process parameters, microstructure and properties of 316 L stainless steel processed by selective laser melting // Material Science Engineering: A. 2018. Vol. 718. P. 64–73. http://doi.org/10.1016/j.msea.2018.01.103
68. Leuders S., Thöne M., Riemer A., Niendorf T., Tröster T., Richard H.A., Maier H.J. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue re sistance and crack growth performance // International Journal of Fatigue. 2013. Vol. 48. P. 300–307. http://doi.org/10.1016/j.ijfatigue.2012.11.011
69. Yasa E., Kruth J.P. Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting // Procedia Engineering. 2011. Vol. 19. P. 389–395. http://doi.org/10.1016/j.proeng.2011.11.130
70. Spierings A.B., Starr T.L., Wegener K. Fatigue performance of addi tive manufactured metallic parts // Rapid Prototyping Journal. 2013. Vol. 19. No. 2. P. 88–94. http://doi.org/10.1108/13552541311302932
71. Mazzoli A. Selective laser sintering in biomedical engineering // Medical & Biological Engineering & Computing. 2013. Vol. 51. No. 3. P. 245–256. http://doi.org/10.1007/s11517-012-1001-x
72. Dehoff R.R., Babu S.S. Characterization of interfacial microstructures in 3003 aluminum alloy blocks fabricated by ultrasonic additive manufacturing // Acta Materialia. 2010. Vol. 58. No. 13. P. 4305–4315. http://doi.org/10.1016/j.actamat.2010.03.006
73. Ram G.D.J., Robinson C., Yang Y., Stucker B.E. Use of ultrasonic consolidation for fabrication of multi-material structures // Rapid Prototyping Journal. 2007. Vol. 13. No. 4. P. 226–235. http://doi.org/10.1108/13552540710776179
74. Технологии аддитивного производства [Электронный ресурс]. URL: https://slide-share.ru/tekhnologii-additivnogo-proizvodstvaiskhodnaya-model-additivnij-process-122962 (дата обращения: 02.09.2021).
75. Meteyer S., Xu X., Perry N., Zhao Y.F. Energy and material flow analysis of binder-jetting additive manufacturing processes // Proce dia CIRP. 2014. Vol. 15. P. 19–25. http://doi.org/10.1016/j.procir.2014.06.030
76. Binder Jetting // Additive Manufacturing Research Group | Loughborough University [Electronic resource]. URL: https://www.lboro. ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/ binderjetting/ (accessed: 02.09.2021).
77. Технологии 3D печати [Электронный ресурс]. 2017. URL: https://tp3d.ru/index.php?route=record/record&record_id=37 (дата обращения: 08.06.2021).
78. Murr L.E., Gaytan S.M., Martinez E., Medina F., Wicker R.B. Next generation orthopaedic implants by additive manufacturing us ing electron beam melting // International Journal of Biomaterials. 2012. Vol. 2012. Article 245727. http://doi.org/10.1155/2012/245727
79. Justin D.F., etc. Laser based metal deposition (LBMD) of antimicrobials to implant surfaces: patent 7951412 USA. 2011.
80. Karlsson J., Snis A., Engqvist H., Lausmaa J. Characterization and comparison of materials produced by electron beam melting (EBM) of two different Ti-6Al-4V powder fractions // Journal of Materials Processing Technology. 2013. Vol. 213. No. 12. P. 2109–2118. http://doi.org/10.1016/j.jmatprotec.2013.06.010
81. Zhao X., Chen J., Lin X., Huang W. Study on microstructure and mechanical properties of laser rapid forming Inconel 718 // Ma terials Science and Engineering: A. 2008. Vol. 478. No. 1–2. P. 119–124. http://doi.org/10.1016/j.msea.2007.05.079
82. Sames W.J., List F.A., Pannala S., Dehoff R.R., Babu S.S. The metallurgy and processing science of metal additive manufacturing // International Materials Reviews. 2016. Vol. 61. No. 5. P. 315–360. http://doi.org/10.1080/09506608.2015.1116649
83. ГОСТ Р 51761-2005. Пропанты алюмосиликатные. Технические условия. 2006. 31 с. 85. Советников Е.И. Оценки развития аддитивных технологий // Технология легких сплавов. 2015. № 3. С. 17–31.
84. Slotwinski J.A., Garboczi E.J., Stutzman P.E., Ferraris C.F., Wat son S.S., Peltz M.A. Characterization of metal powders used for additive manufacturing // Journal of Research of the National Institute of Standards and Technology. 2014. Vol. 119. P. 460‒493. http://doi.org/10.6028/jres.119.018
85. ГОСТ 19440-94 Порошки металлические. Определение насыпной плотности. Часть 1. Метод с использованием воронки. Часть 2. Метод волюмометра Скотта.
86. ГОСТ 20899-98 (ИСО 4490-78) Порошки металлические. Определение текучести с помощью калиброванной воронки (прибора Холла).
87. Herzog D., Seyda V., Wycisk E., Emmelmann C. Additive manufacturing of metals // Acta Materialia. 2016. Vol. 117. P. 371–392. http://doi.org/10.1016/j.actamat.2016.07.019
88. Каблов Е.Н. Тенденции и ориентиры инновационного развития России. ВИАМ, 2015. 557 с.
89. Каблов Е.Н. Аддитивные технологии ‒ доминанта националь ной технологической инициативы // Интеллект и технологии. 2015. № 2 (11). С. 52–55.
90. Hassanin H., Elshaer A., Benhadj-Djilali R., Modica F., Fassi I. Surface finish improvement of additive manufactured metal parts // Micro and Precision Manufacturing. 2018. P. 145–164. http://doi.org/10.1007/978-3-319-68801-5_7
91. Beiderbeck D., Deradjat D., Minshall T. The Impact of Additive Manufacturing Technologies on Industrial Spare Parts Strategies. 2018. 57 p.
92. Li Y., Jia G., Cheng Y., Hu Y. Additive manufacturing technology in spare parts supply chain: A comparative study // International Journal of Production Research. 2017. Vol. 55. No. 5. P. 1498–1515. http://doi.org/10.1080/00207543.2016.1231433
93. Ziółkowski M., Dyl T. Possible applications of additive manufacturing technologies in shipbuilding: A review // Machines. 2020. Vol. 8. No. 4. P. 1–34. http://doi.org/10.3390/machines8040084
94. Орыщенко А.С., Горынин И.В., Кузнецов П.А., Теленков А.И., Савин В.И., Бобырь В.В. Аддитивные технологии на базе ком позиционных порошковых материалов // Аддитивные технологии в российской промышленности. 2015. С 1‒22.
95. Bajaj P., Hariharan A., Kini A., Kürnsteiner P., Raabe D., Jägle E.A. Steels in additive manufacturing: A review of their microstructure and properties // Materials Science and Engineering: A. 2020. Vol. 772. Article 138633. http://doi.org/10.1016/j.msea.2019.138633
96. Wang Z., Palmer T.A., Beese A.M. Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing // Acta Materialia. 2016. Vol. 110. P. 226–235. http://doi.org/10.1016/j.actamat.2016.03.019
97. Sun Z., Tan X., Tor S.B., Yeong W.Y. Selective laser melting of stainless steel 316L with low porosity and high build rates // Materials & Design. 2016. Vol. 104. P. 197–204. http://doi.org/10.1016/j.matdes.2016.05.035
98. Saeidi K., Kevetkova L., Lofaj F., Shen Z. Novel ferritic stainless steel formed by laser melting from duplex stainless steel powder with advanced mechanical properties and high ductility // Materials Science and Engineering: A. 2016. Vol. 665. P. 59–65. http://doi.org/10.1016/j.msea.2016.04.027
99. Rafi H.K., Pal D., Patil N., Starr T.L., Stucker B.E. Microstructure and mechanical behavior of 17-4 precipitation hardenable steel processed by selective laser melting // Journal of Materials Engineering and Performance. 2014. Vol. 23. No. 12. P. 4421–4428. http://doi.org/10.1007/s11665-014-1226-y
100. Röttger A., Geenen K., Windmann M., Binner F., Theisen W. Com parison of microstructure and mechanical properties of 316 L austenitic steel processed by selective laser melting with hot-isostatic pressed and cast material // Materials Science and Engineering: A. 2016. Vol. 678. P. 365–376. http://doi.org/10.1016/j.msea.2016.10.012
101. Ziętala M., Durejko T., Polański M., Kunce I., Płociński T., Zieliński W., Łazińska M., Stępniowski W., Czujko T., Kurzydłowski K.J., Bojar Z. The microstructure, mechanical properties and corrosion resistance of 316 L stainless steel fabricated using laser engineered net shaping // Materials Science and Engineering: A. 2016. Vol. 677. P. 1–10. http://doi.org/10.1016/j.msea.2016.09.028
102. Abd-Elghany K., Bourell D.L. Property evaluation of 304L stainless steel fabricated by selective laser melting // Rapid Prototyping Journal. 2012. Vol. 18. No. 5. P. 420–428. http://doi.org/10.1108/13552541211250418
103. Wu J.H., Lin C.K. Influence of high temperature exposure on the mechanical behavior and microstructure of 17-4 PH stainless steel // Journal of Materials Science. 2003. Vol. 38. No. 5. P. 965–971. http://doi.org/10.1023/A:1022377225704
104. Ning F., Cong W. Microstructures and mechanical properties of Fe-Cr stainless steel parts fabricated by ultrasonic vibration-assist ed laser engineered net shaping process // Materials Letters. 2016. Vol. 179. P. 61–64. http://doi.org/10.1016/j.matlet.2016.05.055
105. LeBrun T., Nakamoto T., Horikawa K., Kobayashi H. Effect of retained austenite on subsequent thermal processing and resultant mechanical properties of selective laser melted 17-4 PH stainless steel // Materials & Design. 2015. Vol. 81. P. 44–53. http://doi.org/10.1016/j.matdes.2015.05.026
106. Sander G., Babu A.P., Gao X., Jiang D., Birbilis N. On the effect of build orientation and residual stress on the corrosion of 316L stain less steel prepared by selective laser melting // Corrosion Science. 2021. Vol. 179. Article 109149. http://doi.org/10.1016/j.corsci.2020.109149
107. Melia M.A., Nguyen H.D.A., Rodelas J.M., Schindelholz E.J. Cor rosion properties of 304L stainless steel made by directed ener gy deposition additive manufacturing // Corrosion Science. 2019. Vol. 152. P. 20–30. http://doi.org/10.1016/j.corsci.2019.02.029
108. Shahriari A., Khaksar L., Nasiri A., Hadadzadeh A., Amirkhiz B.S., Mohammadi M. Microstructure and corrosion behavior of a novel additively manufactured maraging stainless steel // Electrochimica Acta. 2020. Vol. 339. Article 135925. http://doi.org/10.1016/j.electacta.2020.135925
109. Wang L., Dong C., Man C., Kong D., Xiao K., Li X. Enhancing the corrosion resistance of selective laser melted 15-5PH marten site stainless steel via heat treatment // Corrosion Science. 2020. Vol. 166. Article 108427. http://doi.org/10.1016/j.corsci.2019.108427
110. Barroux A., Ducommun N., Nivet E., Laffont L., Blanc C. Pitting corrosion of 17-4PH stainless steel manufactured by laser beam melting // Corrosion Science. 2020. Vol. 169. Article 108594. http://doi.org/10.1016/j.corsci.2020.108594
111. Alvi S., Saeidi K., Akhtar F. High temperature tribology and wear of selective laser melted (SLM) 316L stainless steel // Wear. 2020. Vol. 448–449. Article 203228. http://doi.org/10.1016/j.wear.2020.203228
112. Lashgari H.R., Xue Y., Onggowarsito C., Kong C., Li S. Microstruc ture, tribological properties and corrosion behaviour of additively manufactured 17-4PH stainless steel: Effects of scanning pattern, build orientation, and single vs. double scan // Materials Today Communications. 2020. Vol. 25. Article 101535. http://doi.org/10.1016/j.mtcomm.2020.101535
113. Sanjeev K.C., Nezhadfar P.D., Phillips C., Kennedy M.S., Sham saei N., Jackson R.L. Tribological behavior of 17–4 PH stainless steel fabricated by traditional manufacturing and laser-based ad ditive manufacturing methods // Wear. 2019. Vol. 440–441. Ar ticle 203100. http://doi.org/10.1016/j.wear.2019.203100
Рецензия
Для цитирования:
Колмаков А.Г., Иванников А.Ю., Каплан М.А., Кирсанкин А.А., Севостьянов М.А. Коррозионностойкие стали в аддитивном производстве. Известия высших учебных заведений. Черная Металлургия. 2021;64(9):619-650. https://doi.org/10.17073/0368-0797-2021-9-619-650
For citation:
Kolmakov А.G., Ivannikov А.Yu., Kaplan М.А., Kirsankin А.А., Sevost’yanov М.A. Коррозионностойкие стали в аддитивном производстве. Izvestiya. Ferrous Metallurgy. 2021;64(9):619-650. (In Russ.) https://doi.org/10.17073/0368-0797-2021-9-619-650