Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Modeling of healing pores of cylindrical form under the action of shock waves in a crystal subjected to shear deformation

https://doi.org/10.17073/0368-0797-2021-6-427-434

Abstract

Volumetric defects in crystals worsen operational properties of structural materials; therefore, the problem of reducing discontinuities in solid is one of the most important in modern materials science. In the present work, the results of computer simulation are presented that demonstrate possibility of collapse of pores in a crystal in state of shear deformation under the influence of shock waves. Similar waves can occur in a solid under external high-intensity exposure. For example, in the zone of propagation of displacement cascade, there are regions in which occurs a mismatch between the thermalization times of atomic vibrations and the removal of heat from them. As a result of the expansion of such a region, a shock after cascade wave arises. The simulation was carried out based on molecular dynamics method using the potential calculated by means of mmersed atom method. As a bulk defect, we considered extended pores of cylindrical shape, which can be formed after passing of high-energy ions through a crystal, or, for example, when superheated closed fluid inclusions (mother liquor) reach the surface. The study has shown that such defects are the source of heterogeneous nucleation of dislocation loops, contributing to a decrease in the shear stresses in simulated structure. Dependences of the average dislocation density on the shear angle and temperature of the designed cell were established, and the loop growth rate was estimated. Generated shock waves create additional tangential stresses that contribute to the formation of dislocation loops; therefore, in this case, dislocations are observed even with a small shear strain. If during simulation the thermal effect increases, the pore collapses.

About the Authors

A. V. Markidonov
Siberian State Industrial University; Novokuznetsk Branch of Kemerovo State University
Russian Federation

Artem V. Markidonov, Dr. Sci. (Phys. –Math.), Assist. Prof. of the Chair of Sciences named after prof. V.M. Finkel; Head of the Chair of Informatics and Computer Engineering

654007 Kemerovo Region – Kuzbass, Novokuznetsk, Kirova Str., 42 

654041 Novokuznetsk, Kemerovo Region – Kuzbass, Tsiolkovskogo Str., 23  



M. D. Starostenkov
Polzunov Altai State Technical University
Russian Federation

Mikhail D. Starostenkov, Dr. Sci. (Phys. –Math.), Prof., Head of the Chair of Physics

656038 Altai Territory, Barnaul, Lenina Ave., 46  



D. A. Lubyanoi
Prokopyevsk Branch of the Kuzbass State Technical University named after T.F. Gorbachev
Russian Federation

Dmitrii A. Lubyanoi, Cand. Sci. (Eng.), Assist. Prof. of the Chair of Technologies and Integrated Mechanization of Mining

653039 Kemerovo Region – Kuzbass, Prokopyevsk, Nogradskaya Str., 32



P. V. Zakharov
Shukshin Altai State Humanitarian and Pedagogical University
Russian Federation

Pavel V. Zakharov, Dr. Sci. (Phys.–Math.), Prof. of the Chair of Mathematics, Physics, Informatics

659333 Altai Territory, Biysk, Korolenko Str., 53  



V. N. Lipunov 
Polzunov Altai State Technical University
Russian Federation

Vyacheslav N. Lipunov, Postgraduate of the Chair of Physics

656038 Altai Territory, Barnaul, Lenina Ave., 46



References

1. Betekhtin V.I. Porosity and mechanical properties of solids. Vestnik Tomskogo gosudarstvennogo universiteta. 1998, vol. 3, no. 3, pp.209–210. (In Russ.).

2. Ovchinnikov V.V. Radiation-dynamic effects. Potential for producing condensed media with unique properties and structural states. Physics-Uspekhi. 2008, vol. 51, no. 9, pp. 955–964. http://dx.doi.org/10.1070/PU2008v051n09ABEH006609

3. Calder A.F., Bacon D.J., Barashev A.V., Osetsky Yu.N. On the origin of large interstitial clusters in displacement cascades. Philosophical Magazine. 2010, vol. 90, no. 7-8, pp. 863–884. https://doi.org/10.1080/14786430903117141

4. Krivtsov A.M. Molecular dynamics simulation of plastic effects upon spalling. Physics of the Solid State. 2004, vol. 46, no. 6, pp.1055–1060. (In Russ.). https://doi.org/10.1134/1.1767244

5. Zol’nikov K.P., Korchuganov A.V., Kryzhevich D.S., ChernovV.M., Psakh’e S.G. Shock waves in metal crystallites under radiation exposure. Voprosy atomnoi nauki i tekhniki. Seriya “Termoyadernyi sintez”. 2015, vol. 38, no. 2, pp. 68–74. (In Russ.).

6. Markidonov A.V., Starostenkov M.D., Pavlovskaya E.P., YashinA.V., Poletaev G.M. Low-temperature dissolution of a pore near the crystal surface under the influence of shock waves. Fundamental’nye problemy sovremennogo materialovedeniya. 2013, vol. 10, no. 2, pp. 254–260. (In Russ.).

7. Markidonov A.V., Starostenkov M.D., Pavlovskaya E.P., YashinA.V., Medvedev N.N., Zakharov P.V. Structural transformation of vacancy pores in a deformed crystal under the action of shock waves. Fundamental'nye problemy sovremennogo materialovedeniya. 2013, vol. 10, no. 4, pp. 563–571. (In Russ.).

8. Markidonov A.V., Starostenkov M.D., Zakharov P.V., Obidina O.V. Pore formation in an FCC crystal under the action of post-cascade shock waves. Fundamental’nye problemy sovremennogo materialovedeniya. 2015, vol. 12, no. 2, pp. 231–240. (In Russ.).

9. Markidonov A.V., Starostenkov M.D., Poletaev G.M. Transformation of nanopores in gold under conditions of thermal activation and exposure to sound and shock waves. Izvestiya Rossiiskoi akademii nauk. Seriya fizicheskaya. 2015, vol. 79, no. 9, pp. 1233. (In Russ.). https://doi.org/10.7868/S0367676515090136

10. Markidonov A.V., Starostenkov M.D., Zakharov P.V., LubyanoiD.A., Lipunov V.N. Emission of dislocation loops by nanopores in FCC crystal under the action of post-cascade shock waves upon shear deformation. Zhurnal eksperimental’noi i teoreticheskoi fiziki. 2019, vol. 156, no. 6 (12), pp. 1078–1083. (In Russ.). https://doi.org/10.1134/S0044451019120046

11. Barbu A., Dunlop A., Lesueur D., Averback R.S. Latent tracks do exist in metallic materials. Europhysics Letters. 1991, vol. 15, no. 1, pp. 37–42. https://doi.org/10.1209/0295-5075/15/1/007

12. Prokof’ev M.A., Berdonosova D.G., Melikhov I.V., BerdonosovS.S. On the possibility of obtaining crystalline materials containing extended cylindrical pores. Moscow University Chemistry Bulletin. 2010, vol. 65, no. 4, pp. 269–273. (In Russ.). https://doi.org/10.3103/S0027131410040115

13. Foiles S.M., Baskes M.I., Daw M.S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical Review B. 1986, vol. 33, no. 12, pp. 7983–7991. https://doi.org/10.1103/physrevb.33.7983

14. XMD – Molecular Dynamics for Metals and Ceramics. [Electronic resource]. Available at URL: http://xmd.sourceforge.net/about.html (Accessed 30.01.2020).

15. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool. Modelling and Simulation Materials Science and Engineering. 2010, vol. 18, article 015012. https://doi.org/10.1088/0965-0393/18/1/015012

16. Andersen H.C. Molecular dynamics simulations at constant pressure and/or temperature. The Journal of Chemical Physics. 1980, vol. 72, no. 4, pp. 2384–2393. https://doi.org/10.1063/1.439486

17. Stukowski A., Albe K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modelling and Simulation in Materials Science and Engineering. 2010, vol. 18, no. 8, article 085001. https://doi.org/10.1088/0965-0393/18/8/085001

18. Stukowski A., Bulatov V.V., Arsenlis A. Automated identification and indexing of dislocations in crystal interfaces. Modelling and Simulation in Materials Science and Engineering. 2012, vol. 20, no.8, article 085007. https://doi.org/10.1088/0965-0393/20/8/085007

19. Stukowski A. Computational analysis methods in atomistic modeling of crystals. JOM. 2014, vol. 66, no. 3, pp. 399–407. https://doi.org/10.1007/s11837-013-0827-5

20. Norman G.E., Yanilkin A.V. Homogeneous nucleation of dislocations. Physics of the Solid State. 2011, vol. 53, no. 8, pp. 1614–1619. (In Russ.). https://doi.org/10.1134/S1063783411080221

21. Xue L. Constitutive modeling of void shearing effect in ductile fracture of porous materials. Engineering Fracture Mechanics. 2008, vol. 75, no. 11, pp. 3343–3366. https://doi.org/10.1016/j.engfracmech.2007.07.022

22. Kozlov E.V., Trishkina L.I., Koneva N.A. Scalar dislocation density and its components accumulated during deformation in lowconcentration Cu – Al solid solutions. Fundamental’nye problemy sovremennogo materialovedeniya. 2011, vol. 8, no. 1, pp. 52–60. (In Russ.).

23. Skuratov V.A., Saifulin M.M., Aralbaeva G.M., O’Connell J.H., vanVuuren A.J. Damage of titanium dioxide near the surface after irradiation with fast heavy ions. Vestnik Karagandinskogo universiteta. Fizika. 2017, no. 1 (85), pp. 47–54. (In Russ.).

24. Zhilyaev P.A, Kuksin A.Yu., Norman G.E., Starikov S.V., StegailovV.V., Yanilkin A.V. Influence of material microstructure on dynamic plasticity and strength: Molecular dynamics modelling. Fiziko-khimicheskaya kinetika v gazovoi dinamike. 2010, vol. 9, no.1, pp. 104–109. (In Russ.).

25. Kositski R., Steinberger D., Sandfeld S., Mordehai D. Shear relaxation behind the shock front in <110> Molybdenum – From the Atomic Scale to Continuous Dislocation Fields. Computational Materials Science. 2018, vol. 149, pp. 125–133. https://doi.org/10.1016/j.commatsci.2018.02.058

26. Tang J.F., Xiao J.C., Deng L., Li W., Zhang X.M., Wang L., XiaoS.F., Deng H.Q., Hu W.Y. Shock wave propagation, plasticity, and void collapse in open-cell nanoporous Ta. Physical Chemistry Chemical Physics. 2018, vol. 20, no. 44, pp. 28039–28048. https://doi.org/10.1039/C8CP05126G

27. Starostenkov M.D., Potekaev A.I., Markidonov A.V., Kulagina V.V., Grinkevich L.S. Dynamics of edge dislocations in a low-stability FCC-system irradiated by high-energy particles. Russian Physics Journal. 2017, vol. 59, no. 9, pp. 1446–1453. (In Russ.).

28. Ackland G.J., Jones A.P. Applications of local crystal structure measures in experiment and simulation. Physical Review B. 2006, vol.73, no. 5, article 054104. https://doi.org/10.1103/PhysRevB.73.054104

29. Terekhov S.V., Limanovskii A.I. “Phase of emptiness” and diffuse phase transition. Fizika i tekhnika vysokikh davlenii. 2018, vol. 28, no. 3, pp. 65–74. (In Russ.).

30. Terekhov S.V. Fuzzy phase transition in amorphous Fe40Ni40P14B6: alloy: Thermodynamics of phases and kinetics of crystallization. Fizika i tekhnika vysokikh davlenii. 2019, vol. 29, no. 2, pp. 24–39. (In Russ.)


Review

For citations:


Markidonov A.V., Starostenkov M.D., Lubyanoi D.A., Zakharov P.V., Lipunov  V.N. Modeling of healing pores of cylindrical form under the action of shock waves in a crystal subjected to shear deformation. Izvestiya. Ferrous Metallurgy. 2021;64(6):427-434. (In Russ.) https://doi.org/10.17073/0368-0797-2021-6-427-434

Views: 478


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)