Электромеханическая установка на базе генератора мощных токовых импульсов
https://doi.org/10.17073/0368-0797-2020-9-755-762
Аннотация
Об авторах
В. А. КузнецовРоссия
к.т.н., доцент кафедры электротехники, электропривода и промышленной электроники
654007, Новокузнецк, Кемеровская область – Кузбасс., ул. Кирова, 42
Е. С. Кузнецова
Россия
к.т.н., доцент кафедры электротехники, электропривода и промышленной электроники
654007, Новокузнецк, Кемеровская область – Кузбасс., ул. Кирова, 42
О. А. Перегудов
Россия
к.т.н., помощник ректора по молодежной политике
644050, г. Омск, пр. Мира, 11
Список литературы
1. Электростимулированная пластичность металлов и сплавов / В.Е. Громов, Л.Б. Зуев, Э.В. Козлов, В.Я. Целлермаер. – М.: Недра, 1996. – 290 с.
2. Electrically assisted forming: modeling and control / W.A. Salandro, J.J. Jones, C. Bunget, L. Mears, J.T. Roth. – Basel, Switzerland: Springer, 2014. – 376 p.
3. Jones J.J., Mears L., Roth J.T. Electrically-assisted forming of magnesium AZ31: effect of current magnitude and deformation rate on forgeability // ASME Journal of Manufacturing Science and Engineering. 2012. Vol. 134. No. 3. Article 034504.
4. Bunget C., Salandro W.A., Mears L., Roth J.T. Energy-based modeling of an electrically-assisted forging process. – In book: 38th Annual North American Manufacturing Research Conference (NAMRC 38). – Kingston, ON, Canada, 2010. P. 647 – 654.
5. Hong S., Jeong Y., Chowdhury M.N., Chun D., Kim M., Han H.N. Feasibility of electrically assisted progressive forging of aluminum 6061-T6 alloy // CIRP Annals – Manufacturing Technology. 2015. Vol. 64. No. 1. P. 277 – 280.
6. Perkins T.A., Kronenberger T.J., Roth J.T. Metallic forging using electrical flow as an alternative to warm/hot working // ASME Journal of Manufacturing Science and Engineering. 2007. Vol. 129. No. 1. P. 84 – 94.
7. Li X., Wang F., Li X., Zhu J., Tang G. Mg–3Al–1Zn alloy strips processed by electroplastic differential speed rolling // Materials Science Technology. 2016. Vol. 33. No. 2. P. 215 – 219.
8. Kozlov A.V., Mordyuk B.N., Chernyashevsky A.V. On the additivity of acoustoplastic and electroplastic effects // Materials Science and Engineering: A. 1995. Vol. 190. No. 1-2. P. 75 – 79.
9. Egea A.J.S., Rojas H.A.G., Celentano D.J., Peiro J.J. Mechanical and metallurgical changes on 308L wires drawn by electropulses // Materials and Design. 2016. Vol. 90. P. 1159 – 1169.
10. Zhang J., Tang G.Y., Yan Y.J., Fang W. Effect of current pulses on the drawing stress and properties of Cr17Ni6Mn3 and 4J42 alloys in the cold-drawing process // Journal of Materials Processing Technology. 2002. Vol. 120. No. 1-3. P. 13 – 16.
11. Ulutan D., Pleta A., Mears L. Electrically-assisted machining of titanium Alloy Ti-6Al-4V and nickel-based alloy IN-738: an investigation // ASME International Manufacturing Science and Engineering Conference. 2015. Paper No. MSEC2015-9465.
12. Jones E., Jones J. J., Mears L. Empirical modeling of direct electric current effect on machining cutting force // ASME International Manufacturing Science and Engineering Conference. 2013. Paper No. MSEC2013-1229.
13. Hameed S., Rojas H.A.G., Egea A.J.S., Alberro A.N. Electroplastic cutting influence on power consumption during drilling process // International Journal of Advanced Manufacturing Technology. 2016. Vol. 87. No. 5-8. P. 1835 – 1841.
14. Zhang D., To S., Zhu Y.H., Wang H., Tang G.Y. Static electropulsinginduced microstructural changes and their effect on the ultraprecision machining of cold-rolled AZ91 alloy // Metallurgical and Materials Transactions A. 2012. Vol. 43. No. 4. P. 1341 – 1346.
15. Ji R., Liu Y., Zhang Y., Dong X., Chen Z., Cai B. Experimental research on machining characteristics of SiC ceramic with end electric discharge milling // Journal of Mechanical Science and Technology. 2011. Vol. 25. No. 6. P. 1535 – 1542.
16. Ruszkiewicz B.J., Mears L. Electrically assisted compression of tungsten carbide and its implications for electrically assisted machining // ASME International Manufacturing Science and Engineering Conference. 2016. Paper No. MSEC2016-8554.
17. Langer J., Hoffmann M.J., Guillon O. Direct comparison between hot pressing and electric field-assisted sintering of submicron alumina // Acta Materialia. 2009. Vol. 57. No. 18. P. 5454 – 5465.
18. Grasso S., Sakka Y., Maizza G. Electric current activated/ assisted sintering (ECAS): A review of patents 1906–2008 // Science and Technology of Advanced Materials. 2009. Vol. 10. No. 5. P. 053001.
19. Munir Z.A., Quach D.V., Ohyanagi M. Electric current activation of sintering: a review of the pulsed electric current sintering process // Journal of the American Ceramic Society. 2011. Vol. 94. No. 1. P. 1 – 19.
20. Skovron J.D., Ruszkiewicz B.J., Mears L. Effect of electrical augmentation on the joining of Al6063-T5 using flow drill screws // ASME International Manufacturing Science and Engineering Conference. 2016. Paper No. MSEC2016-8578.
21. Ferrando W.A. The Concept of electrically assisted friction stir welding (EAFSW) and application to the processing of various metals // Naval Surface Warfare Center, Bethesda, MD. 2008. Report No. NSWCCD-61-TR- 2008/13.
22. Liu X., Lan S., Ni J. Electrically assisted friction stir welding for joining Al 6061 to TRIP 780 steel // Journal of Materials Processing Technology. 2015. Vol. 219. P. 112 – 123.
23. Santos T.G., Miranda R.M., Vilaca P. Friction stir welding assisted by electrical joule effect // Journal of Materials Processing Technology. 2014. Vol. 214. No. 10. P. 2127 – 2133.
24. Santos T.G., Lopes N., Machado M., Vilaca P., Miranda R. Surface reinforcement of AA5083-H111 by friction stir processing assisted by electrical current // Journal of Materials Processing Technology. 2015. Vol. 216. P. 375 – 380.
25. Stolyarov V.V. Deformability and nanostructuring of TiNi shape-memory alloys during electroplastic rolling // Materials Science and Engineering. A. 2009. Vol. 503. No. 1. P. 18 – 20.
26. Ng M.K., Li L., Fan Z., Gao R.X., Smith E.F., Ehmann K.F., Cao J. Joining sheet metals by electrically-assisted roll bonding // CIRP Annals. 2015. Vol. 64. No. 1. P. 273 – 276.
27. Bramley A.N., Jeswiet J., Micari F., Duflou J., Allwood J. Asymmetric single point incremental forming of sheet metal // CIRP Annals Manufacturing Technology. 2005. Vol. 54. No. 2. P. 623 – 649.
28. Neveux T., Ruszkiewicz B.J., Grimm T., Roth J.T., Ragai I. Electrically assisted global springback elimination after single point incremental forming // ASME International Manufacturing Science and Engineering Conference. 2016. Paper No. MSEC2016-8813.
29. Ruszkiewicz B.J., Roth J.T., Johnson D.H. Locally applied direct electric current’s effect on springback of 2024-T3 aluminum after single point incremental forming // ASME International Manufacturing Science and Engineering Сonference. 2015. Paper No. MSEC2015-9429.
30. Khal A., Ruszkiewicz B.J., Mears L. Springback evaluation of 304 stainless steel in an electrically assisted air bending operation // ASME International Manufacturing Science and Engineering Сonference. 2016. Paper No. MSEC2016-8736.
31. Grimm T.J., Roth J.T., Ragai I. Electrically assisted global springback elimination in AMS-T-9046 titanium after single point incremental forming // ASME International Manufacturing Science and Engineering Сonference. 2016. Paper No. MSEC2016-8811.
32. Patent 8,021,501 B2 US. Single point incremental forming of metallic materials using applied direct current / Roth J. Penn State Research Foundation, University Park, PA (US). 2011.
33. Fan G., Gao L., Hussain G., Wu Z. Electric hot incremental forming: a novel technique // Int. Journal of Machine Tools and Manufacture. 2008. Vol. 48. No. 15. P. 1688 – 1692.
34. Shi X., Gao L., Khalatbari H., Xu Y., Wang H., Jin L. Electric hot incremental forming of low carbon steel sheet: accuracy improvement // Int. Journal of Advance Manufacturing Technology. 2013. Vol. 68. No. 1-4. P. 241 – 247.
35. Bao W., Chu X., Lin S., Gao J. Experimental investigation on formability and microstructure of AZ31B alloy in electropulseassisted incremental forming // Materials and Design. 2015. Vol. 87. P. 632 – 639.
36. Honarpisheh M., Abdolhoseini M.J. Experimental and numerical investigation of forming force of Ti6Al4V sheet in electric hot incremental forming process of a conical part // Amirkabir Journal of Mechanical Engineering. 2017. Vol. 49. No. 2. Р. 143 – 146.
37. Xu D.K., Lu B., Cao T.T., Zhang H., Chen J., Long H., Cao J. Enhancement of process capabilities in electrically-assisted double sided incremental forming // Materials and Design. 2016. Vol. 92. P. 268 – 280.
38. Xie H., Dong X., Peng F., Wang Q., Liu K., Wang X., Chen F. Investigation on the electrically-assisted stress relaxation of AZ31B magnesium alloy sheet // Journal of Materials Processing Technology. 2016. Vol. 227. P. 88 – 95.
39. Adams D., Jeswiet J. Single-point incremental forming of 6061-T6 using electrically assisted forming methods // Proceedings of the Institution of Mechanical Engineers, Part B - Journal of Engineering Manufacture. 2014. Vol. 228. No. 7. P. 757 – 764.
40. Valoppi B., Egea A.J.S., Zhang Z., Rojas H.A.G., Ghiotti A., Bruschi S., Cao J. A hybrid mixed double-sided incremental forming method for forming Ti6Al4V alloy // CIRP Annals – Manufacturing Technology. 2016. Vol. 65. No. 1. P. 309 – 312.
41. Nguyen-Tran H.D., Oh H.S., Hong S.T., Han H.N., Cao J., Ahn S.H., Chun D.M. A review of electrically-assisted manufacturing // Int. Journal of Precision Engineering and Manufacturing. Green Technology. 2015. Vol. 2. No. 4. P. 365 – 376.
42. Guan L., Tang G., Chu P.K. Recent advances and challenges in electroplastic manufacturing processing of metals // Journal Materials Research. 2010. Vol. 25. No. 7. P. 1215 – 1224.
43. Жмакин Ю.Д., Загуляев Д.В., Коновалов С.В., Громов В.Е., Кузнецов В.А. Генератор мощных токов импульсов на запираемых тиристорах // Промышленная энергетика. 2010. № 6. С. 39 – 41.
44. Жмакин Ю.Д., Загуляев Д.В., Коновалов С.В., Громов В.Е., Кузнецов В.А. Частотно-регулируемый генератор мощных токовых импульсов с обратной связью по амплитуде // Промышленная энергетика. 2011. № 1. С. 28 – 31.
45. Афанасьев А.П., Борисова С.Ю. Моделирование и анализ реакции электромеханического устройства на случайное механическое воздействие // Вестник Приамурского государственного университета им. Шолом-Алейхема. 2016. № 4 (25). С. 9 – 18.
46. Черных И.В. SIMULINK – среда для создания инженерных приложений. – М.: Диалог-МИФИ, 2004. – 491 c.
47. Розанов Ю.К., Кравцов Д.В. Экспериментальное определение характеристик элементов электромеханических систем с использованием частотных методов // Электротехника. 2000. № 7. С. 9 – 13.
48. Жмакин Ю.Д., Романов Д.А., Будовских Е.А., Громов В.Е., Кузнецов В.А. Автоматизированная электровзрывная установка для повышения эксплуатационных характеристик материалов // Промышленная энергетика. 2011. № 6. С. 22 – 26.
49. Кузнецов В.А., Громов В.Е., Кузнецова Е.С., Гагарин А.Ю., Косинов Д.А. Аппаратурное обеспечение электростимулированной обработки металлов // Изв. вуз. Черная металлургия. 2017. Т. 60. № 2. С. 157 – 163.
Рецензия
Для цитирования:
Кузнецов В.А., Кузнецова Е.С., Перегудов О.А. Электромеханическая установка на базе генератора мощных токовых импульсов. Известия высших учебных заведений. Черная Металлургия. 2020;63(9):755-762. https://doi.org/10.17073/0368-0797-2020-9-755-762
For citation:
Kuznetsov V.A., Kuznetsova V.A., Peregudov O.A. Electromechanical installation based on high power current pulse generator. Izvestiya. Ferrous Metallurgy. 2020;63(9):755-762. (In Russ.) https://doi.org/10.17073/0368-0797-2020-9-755-762