General electron theory of reduction and oxidation of metals
https://doi.org/10.17073/0368-0797-2020-3-4-271-285
Abstract
The significance of the new theory of metal reduction from ores has been demonstrated. It was shown that all the existing versions of the theory are based on atomic-molecular representations of the early 20-th century where reduction is considered as a process of exchange of oxygen atoms between a reducing agent and oxide molecules. These representations do not take into account changes in the crystalline structure of oxides and in the state of a gas medium with change in temperature and pressure. The attention here was drawn to the absence of molecules in oxides, and atoms in metals. Inconsistency of a number of the theory conclusions with practice of reduction during operation of plants was revealed. Based on the assumptions of redox reactions as processes of exchange of reagents by the valence electrons, defective ionic structure of real crystals, changes in the state of the gaseous medium during heating and pressure increase using some statements of quantum mechanics on the distribution of electrons in solids, the authors have developed electron version of the reduction theory. This theory is based on the unity of the anionic sublattice of all crystals of the oxide phase and the collective electronic system of all valence electrons of metal cations in oxide. It is shown that in the reduction plants, due to the thermal ionization of gases and thermionic emission from the surface of the heated bodies, the gas medium is plasma. The presence of charged particles in the plasma ensures their interaction at a considerable distance and the course of chemical processes in the kinetic mode. The gaseous reduction products are removed from the reaction zone with exhaust gases, and the electrons released in the plasma are absorbed by the oxide surface and exist in the oxide together with the anionic vacancies that arise when oxygen is removed. In high-grade ores the vacancies merge and disappear on the oxide surface, and the free electrons of the vacancies combine the nearest cations with a metal bond to form a metal shell which later turns into carbides. The formation of carbide shells blocks the oxide surface and stops reduction. When temperature rises and the shells melt the reduction process resumes. Therefore, the carbon-thermal reduction produces cast iron and high-carbon ferroalloys. In low-grade and complex ores the vacancies are scattered in the oxide volume along the total anionic sublattice forming solution of vacancies and free electrons. The vacancies merge and disappear in places of increased concentration of cations where the Fermi level of atoms is less than the chemical potential of the free electrons. In the formed anionic void the free electrons rearrange metal cations with low Fermi energy and bind them with a metal bond bypassing the stage of atom formation. Crystal growth in an anionic void occurs without resistance from the parent oxide phase.
Keywords
About the Authors
V. E. RoshchinRussian Federation
Dr. Sci. (Eng.), Professor, Chief Researcher of the Chair “PyrometallurgicalProcesses".
ChelyabinskA. V. Roshchin
Russian Federation
Dr. Sci. (Eng.), Assist. Professor, Leading Researcher of the Chair “Pyrometallurgical Processes".
Chelyabinsk
References
1. Gruner L. Etudes sur les hauts-formeause. In: Annales des Mines. 1872. pp. 1-14. (In Fr.).
2. Baikov A.A. Sobranie izbrannykh trudov [Selected papers]. Vol. 2. Moscow- Leningrad: Izd. AN SSSR, 1948, 500 p. (In Russ.).
3. Chufarov G.I., Zhuravleva M.G., Balakirev V.F., Men’ A.I. Reduction of metal oxides: Theory status. In: Sb.: Mekhanizm i kinetika vosstanovleniya metallov [Mechanism and kinetics of metal reduction]. Moscow: Nauka, 1970, pp. 7-15. (In Russ.).
4. Rostovtsev S.T., Simonov V.K., Ashin A.K., Kostelov O.L. Mechanism of carbothermic reduction of metal oxides. In: Sb.: Mekha-nizm i kinetika vosstanovleniya metallov [Mechanism and kinetics of metal reduction]. Moscow: Nauka, 1970, pp. 24-31. (In Russ.).
5. Bogdandy L., Engell H.-J. Die Reduktion der Eisenerze. Dusseldorf: Springer Verlag, 1967, 539 p. (Russ.ed.: Bogdandy L., Engell H.-J. Vosstanovlenie zheleznykh rud. Moscow: Metallurgiya, 1971, 519 p.).
6. Vegman E. F., Zherebin B. N., Pokhvistnev A. N. etc. Metallurgiya chuguna [Metallurgy of pig iron]. Moscow: Metallurgiya, 1989, 512 p. (In Russ.).
7. Yusfin Yu.S., Pashkov N.F. Metallurgiya zheleza [Metallurgy of iron]. Moscow: Akademkniga, 2007, 464 p. (In Russ.).
8. Vignes A. Extractive Metallurgy 2. Metallurgical Reaction Processes. London: Wiley-ISTE, 2011, 355 p.
9. Tovarovskii I.G., Merkulov A.E. Standard evaluation of the effect produced by blast furnace parameters on coke consumption and performance. In: Metallurgiya chuguna - vyzovy XXI veka. Trudy VIII Mezhdunarodnogo kongressa domenshchikov [Metallurgy of Iron - 21st Century Challenges: Proc. of the 8th Int. Congress of Blast Furnace Operators]. Moscow: ID Kodeks, 2017, pp. 111-122. (In Russ.).
10. Senin A.V., Pashkeev I.Yu., Mikhailov G.G. Gas-phase/solid-phase reduction of ores. In: Trudy nauchno-prakticheskoi kon-ferentsii "Perspektivy razvitiya metallurgii i mashinostroeniya s ispol’zovaniem zavershennykh fundamental’nykh issledovanii i NIOKR FERROSPLAVY” [Proc. of the Conf. “Prospective development of metallurgy and mechanical engineering on the basis of completed investigations and R&D: FERROALLOYS”]. Ekaterinburg: Al’fa Print, 2018, pp. 72-80. (In Russ.).
11. Ryabchikov I.V., Mizin V.G., Yarovoi K.I. Reduction of iron and chromium from oxides by carbon. Steel in Translation. 2013, vol. 43, no. 6, pp. 379-382.
12. Tleugabulov S.M. Teoriya i tekhnologiya tverdofaznogo vosstanov-leniya zheleza uglerodom [Theory and technology of solid-phase reduction of iron by carbon]. Alma-Ata: Gylym, 1991, 312 p. (In Russ.).
13. Tleugabulov S.M., Abikov S.B., Koishina G.M., Tatybaev M.K. Fundamentals and prospects of the development of reduction steelmaking. Russian Metallurgy (Metally). 2018, vol. 2018, no 3, pp. 282-286.
14. Elyutin V.P., Pavlov Yu.A., Polyakov V.P., Sheboldaev B.V. Vzaimodeistvie okislov metallov s uglerodom [Interaction of metal oxides with carbon]. Moscow: Metallurgiya, 1976, 359 p. (In Russ.).
15. Vodop’yanov A.G., Kozhevnikov G.N., Baranov S.V. Interaction between refractory metal oxides and carbon. Uspekhi khimii. 1988, vol. LVII, no. 9, pp. 1419-1439. (In Russ.).
16. Lyubimov V.D., Shveikin G.P., Afonin Yu.D., Timoshchuk T.A., Shalaginov V.N., Kalacheva M.V., Alyamovskii S.I. Study of the gaseous reaction products of the carbon reduction of the oxides of transition metals. Russian metallurgy. (Metally). 1984, no 2, pp. 49-57.
17. Kolchin O.P. On mechanisms of reduction of metals from their oxides by carbon. In: Mekhanizm i kinetika vosstanovleniya metallov. Sb. nauchn. tr. [Mechanism and kinetics of reduction of metal: Coll. of sci. papers]. Moscow: Nauka, 1970, pp. 40-48. (In Russ.).
18. Cullough S., Hockaday S., Johnson C., Barcza N.A. Pre-reduction and smelting characteristics of Kazakhstan ore samples. In: Proc. of the 12th Int. Ferroalloys Congress "Sustainable Future”, Helsinki, 2010, pp. 249-262.
19. Anacleto N.M., Solheim I., S0rensen B., Ringdalen E., Ostrovski O. Reduction of chromium oxide and ore by methane-containing gas mixtures. In: Proc. of the 15th Int. Ferroalloys Congress, February 25-28, 2018. Jones R.T., den Hoed P., Erwee M.W. eds. Cape Town: Southern Afr. Inst. Min. Metall., 2018.
20. Leikola M., Taskinen P., Eric R.H. Reduction of Kemi chromite with methane. In: Proc. of the 15th Int. Ferroalloys Congress, February 25-28, 2018. Jones R.T., den Hoed P., Erwee M.W. eds. Cape Town: Southern Afr. Inst. Min. Metall., 2018.
21. Sokhanvaran S., Paktunc D., Barnes A. NaOH-assisted direct reduction of Ring of Fire chromite ores, and the associated implications for processing. In: Proc. of the 15th Int. Ferroalloys Congress, February 25-28, 2018. Jones R.T., den Hoed P., Erwee M.W. eds. Cape Town: Southern Afr. Inst. Min. Metall., 2018.
22. Bhalla A., Eric R.H. Mechanism and kinetic modelling of methane-based reduction of Mamatwan manganese ore. In: Proc. of the 15th Int. Ferroalloys Congress, February 25-28, 2018. Jones R.T., den Hoed P., Erwee M.W. eds. Cape Town: Southern Afr. Inst. Min. Metall., 2018.
23. Cheraghi A., Yoozbashizadeh H., Safarian J. Chemical, microstructural, and phase changes of manganese ores in calcination and prereduction by natural gas. In: Proc. of the 15th Int. Ferroalloys Congress, February 25-28, 2018. Jones R.T., den Hoed P., Erwee M.W. eds. Cape Town: Southern Afr. Inst. Min. Metall., 2018.
24. Kalenga M.K., Pan X. Pre-reduction of a South African manganese ore: more insight on the formation of phases. In: Proc. of the 15th Int. Ferroalloys Congress, February 25-28, 2018. Jones R.T., den Hoed P., Erwee M.W. eds. Cape Town: Southern Afr. Inst. Min. Metall., 2018.
25. Petrus H.T.B.M., Putera A.D.P., Sugiarto E., Perdana I., Warma-da I.W. Nurjaman F., Astuti W., Mursito A.T. Kinetics on roasting reduction of limonitic laterite ore using coconut-charcoal and anthracite reductants. Miner. Eng. 2019, vol. 132, pp. 126-133.
26. Li Y.-J., Sun Y.-S., Han Y.-X., Gao P. Coalbased reduction mechanism of low-grade laterite ore. Trans. Nonferrous Met. Soc. China. 2013, vol. 23, no. 11, pp. 3428-3433.
27. Zhukhovitskii A.A., Shvartsman L.A. Fizicheskaya khimiya [Physical Chemistry]. Moscow, Metallurgiya, 1976, 520 p. (In Russ.).
28. Roshchin V.E., Roshchin A.V Physics of the solid phase oxidation and reduction of metals. Russian Metallurgy (Metally). 2015, no. 5, pp. 354-359.
29. Roshchin V.E., Roshchin A.V. Electron mechanism of reduction processes in blast and ferroalloy furnaces. CIS Iron and Steel Review. 2019, vol. 17, pp. 14-24.
30. Roshchin V.E., Gamov P.A., Roshchin A.V., Salikhov S.P. The electronic theory of reduction and the extraction of metals from ore. Steel in Translation. 2019, vol. 49, no. 5, pp. 319-327.
31. Burdett J.K. Chemical bonds: a Dialog. John Wiley & Sons, 1997.
32. Tsirel’son V.G. Kvantovaya khimiya: uchebnik dlya vuzov [Quantum chemistry: Textbook for universities]. Moscow: BINOM, 2014, 245 p. (In Russ.).
33. Fistul’ V.I. Fizika i khimiya tverdogo tela: uchebnik dlya vuzov [Physics and chemistry of solids: Textbook for universities]. Vol. 1. Moscow: Metallurgiya, 1995, 480 p. (In Russ.).
34. Bokshtein B.S., Yaroslavtsev A.B. Diffuziya atomov i ionov v tverdykh telakh [Diffusion of atoms and ions in solids]. Moscow: MISiS, 2005, 362 p. (In Russ.).
35. Vest A. Chemistry of Solids. Theory and Application. Amsterdam: North-Holland, 1985. (Russ. ed.: Vest A. Khimiya tverdogo tela. Teoriya i prilozheniya. Moscow: Mir, 1988).
36. Rees A.L.G. Chemistry of the Defect Solid State. Methuen, London: Wiley, 1954. (Russ. ed.: Rees A. Khimiya kristallov s defektami. Moscow: IL,1956, 134 p.).
37. Hauffe K. Reaktion in undan festen Stoffen. B.I. Berlin: Springer-Verlag, 1955. (Russ. ed.: Hauffe K. Reaktsii v tverdykh telakh i na ikhpoverkhnosti. Moscow: IL, 1963, 275 p.) (In Germ.).
38. Kroger F.A. The chemistry of imperfect crystals. North-Holland, 1964, 1039 p. (Russ. ed.: Kroger F.A. Khimiya nesovershennykh kristallov. Moscow: Mir, 1969, 654 p.).
39. Kofstad P. Nonstoichiometry, diffusion and electrical conductivity in binary metal oxides. New York, 1972. (Russ. ed.: Kofstad P. Ot-klonenie ot stekhiometrii, diffuziya i elektroprovodnost' v prostykh okislakh metallov. Moscow: Mir, 1975, 396 p.).
40. Roshchin V.E., Roshchin A.V. Elektrometallurgiya i metallurgiya stali: uchebnik dlya VUZov [Electrometallurgy and metallurgy of steel: Textbook for universities]. Chelyabinsk: Izd-vo YuUrGU, 2013, 572 p. (In Russ.).
41. Fizicheskii entsiklopedicheskii slovar' [Encyclopedic dictionary of physics]. Prokhorov A.M. ed. Moscow: Sovetskaya entsiklopediya, 1984, 944 p. (In Russ.).
42. Herring C., Nichols M.H. Thermionic emission. Rev. Mod. Phys. 1949, vol. 21, pp.185-270. (Russ. ed.: Herring C., Nichols M.H. Ter-moelektronnaya emissiya. Moscow: IL, 1950, 196 p.).
43. Lauton Dzh., Vainberg F. Termoelektronnaya emissiya v metal-lakh [Thermionic emission in metals]. M.: Nauka, 1984, 353 p. (In Russ.).
44. Roshchin V.E., Roshchin A.V., Gamov P.A., Bil’genov A.S. Electron and mass transfer during solid carbon reduction of metals in solid complex oxides. Metally. 2020, no. 1, pp. 54-71. (In Russ.).
45. Roshchin V.E., Roshchin A.V., Akhmetov K.T., Salikhov S.P. Role of a silicate phase in the reduction of iron and chromium and their oxidation with carbide formation during the manufacture of carbon ferrochrome. Russian Metallurgy (Metally). 2016, no. 11, pp. 1092-1099.
46. Ponomarenko A.G. Thermodynamics of phases with changing compositions which have a common electron system. IV. Fermi level in oxide phases. Zhurnalfizicheskoi khimii. 1974, vol. XLVIII, no. 8, pp. 1954-1958. (In Russ.).
47. Fistul’ V.I. Fizika i khimiya tverdogo tela: uchebnik dlya vuzov [Physics and chemistry of solids: Textbook for universities]. Vol. 2. Moscow: Metallurgiya, 1995, 320 p. (In Russ.).
Review
For citations:
Roshchin V.E., Roshchin A.V. General electron theory of reduction and oxidation of metals. Izvestiya. Ferrous Metallurgy. 2020;63(3-4):271-285. (In Russ.) https://doi.org/10.17073/0368-0797-2020-3-4-271-285