High power current pulse generator based on reversible thyristor converter
https://doi.org/10.17073/0368-0797-2019-12-964-971
Abstract
Keywords
About the Authors
V. A. KuznetsovRussian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair of Electrical Engineering, Electric Drive and Industrial Electronics
Novokuznetsk, Kemerovo Region
G. D. Polkovnikov
Russian Federation
MA Student of the Chair of Electrical Engineering, Electric Drive and Industrial Electronics
Novokuznetsk, Kemerovo Region
V. E. Gromov
Russian Federation
Dr. Sci. (Phys.-math.), Head of the Chair of Science named after V.M. Finkel
Novokuznetsk, Kemerovo Region
V. A. Kuznetsova
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair of Electrical Engineering, Electric Drive and Industrial Electronics
Novokuznetsk, Kemerovo Region
O. A. Peregudov
Russian Federation
Cand. Sci. (Eng.), Assistant of the Rector for Youth Policy
Omsk
References
1. Spitsyn V.I., Troitskii O.A. Elektroplasticheskaya deformatsiya metalla [Electroplastic deformation of metal]. Мoscow: Nauka, 1985, 160 p. (In Russ.).
2. Klimov K.M., Nevikov I.I. Electroplastic effect. Problemy prochnosti. 1984, no. 2, pp. 98–103. (In Russ.).
3. Beklemishev N.N. Working of conducting materials by means of a locally nonuniform pulsed electromagnetic field. Soviet Electrical Engineering. 1982, vol. 53, no. 11, pp. 113–117.
4. Klimov K.M., Shnyrev G.D., Novikov I.I. Change in the ductility of tungsten under the influence of electric current. Metal Science and Heat Treatment. 1977, vol. 19, no. 1, pp. 58–59.
5. Klimov K.M., Shnyrev G.D., Novikov I.I., Isaev A.V. Electrostimulated rolling into a tape of micron sections of tungsten and its alloys. Izv. AN SSSR. Seriya Metally. 1975, no. 4, pp. 143, 144. (In Russ.).
6. Yongda Ye, Song-Zhu Kure-Chu, Zhiyan Sun, Xiaopei Li, Haibo Wang, Guoyi Tang. Nanocrystallization and enhanced surface mechanical properties of commercial pure titanium by electropulsing-assisted ultrasonic surface rolling. Materials & Design. 2018, vol. 149, no. 5, pp. 214–227.
7. Chen Long, Wang Haibo, Liu Dan, Ye Xiaoxin, Li Xiaoliui, Tang Guojil. Effects of electropulsing cutting on the quenched and tempered 45 steel rods. Journal of Wuhan University of TechnologyMater. 2018, vol. 33, pp. 204–211.
8. Ruikun Zhang, Xiaohui Li, Jie Kuang, Xiaopei Li & Guoyi Tang. Texture modification of magnesium alloys during electropulse treatment. Materials Science and Technology. 2017, vol. 33, pp. 1421–1427.
9. Xiaopei Li, Xiaohui Li, Yongda Ye, Ruikun Zhang, Song-Zhu Kure-Chu, Guoyi Tang. Deformation mechanisms and recrystallization behavior of Mg – 3Al – lZn and Mg – lGd alloys deformed by electroplastic-asymmetric rolling. Materials Science & Engineering A. 2019, vol. 742, pp. 722–733.
10. Yong-Da Ye, Xiao-Pei Li, Zhi-Yan Sun, Hai-Bo Wang, Guo-Yi Tang. Enhanced surface mechanical properties and microstructure evolution of commercial pure titanium under electropulsing-assisted ultrasonic surface rolling process. The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature. 2018, vol. 31, no. 12, pp. 1272–1280.
11. Tang G., Zhang J., Yan Y., Zhou H., Fang W. The engineering application of the electroplastic effect in the cold-drawing of stainless steel wire. J. Mater. Process. Technol. 2003, vol. 137, no. 1, pp. 96–99.
12. Kozlov A., Mordyuk B., Chemyashevsky A. On the additivity of acoustoplastic and electroplastic effects. Mater. Sci. Eng. A. 1995, vol. 190, no. 1, pp. 75–79.
13. Brandt J. Ruszkiewicz, Tyler Grimm, lhab Ragai, Laine Mears, John T. Roth a review of electrically-assisted manufacturing with emphasis on modeling and understanding of the electroplastic effect. Journal of Manufacturing Science and Engineering. 2017, vol. 139, no. 11, pp. 110801-1–110801-15.
14. Fan G., Sun F., Meng X., Gao L., Tong G. Electric hot incremental forming of Ti – 6A1 – 4V titanium sheet. Int. J. Adv. Manuf. Technol. 2010, vol. 49, no. 9-12, pp. 941–947.
15. Fan G., Gao L., Hussain G., Wu Z. Electric hot incremental forming: a novel technique. Int. J. Mach. Tools Manuf. 2008, vol. 48, no. 15, pp. 1688–1692.
16. Shi X., Gao L., Khalatbari H., Xu Y., Wang H., Jin L. Electric hot incremental forming of low carbon steel sheet: accuracy improvement. Int. J. Adv. Manuf. Technol. 2013, vol. 68, no. 1-4, pp. 241–247.
17. Bao W., Chu X., Lin S., Gao J. Experimental investigation on formability and microstructure of AZ31B alloy in electropulse-assisted incremental forming. Mater. Des. 2015, no. 87, pp. 632–639.
18. Honarpisheh М., Abdolhoseini М., Amini S. Experimental and numerical investigation of the hot incremental forming of Ti – 6A1 – 4V sheet using electrical current. Int. J. Adv. Manuf. Technol. 2016, vol. 83, no. 9-12, pp. 2027–2037.
19. Xu D., Lu В., Cao Т., Zhang H., Chen J., Long H., Cao J. Enhancement of process capabilities in electrically-assisted double sided incremental forming. Mater. Des. 2016, no. 92, pp. 268–280.
20. Liu R., Lu B., Xu D., Chen J., Chen F., Ou H., Long H. Development of novel tools for electricity-assisted incremental sheet forming of titanium alloy. Int. J. Adv. Manuf. Technol. 2016, vol. 85, no. 5-8, pp. 1137–1144.
21. Xie H., Dong X., Peng F., Wang Q., Liu K., Wang X., Chen F. Investigation on the electrically-assisted stress relaxation of AZ31B magnesium alloy sheet. J. Mater. Process. Technol. 2016, no. 227, pp. 88–95.
22. Adams D., Jeswiet J. Single-point incremental forming of 6061-T6 using electrically assisted forming methods. Proc. Inst. Mech. Eng. 2014, vol. 228, no. 7, pp. 757–764.
23. Valoppi B., Egea A.J.S., Zhang Z., Rojas H.A.G., Ghiotti A., B schi S., Cao J. A hybrid mixed double-sided incremental forming method for forming Ti6A14V alloy. CIRP Aim. Manuf. Technol. 2016, vol. 65, no. 1, pp. 309–312.
24. Nguyen-Tran H., Oh H., Hong S., Han H.N., Cao J., Ahn S., Chun D. A review of electrically-assisted manufacturing. Int. J. Precis: Eng. Manuf. Green Technol. 2015, vol. 2, no. 4, pp. 365–376.
25. Guan L., Tang G., Chu P.K. Recent advances and challenges in electroplastic manufacturing processing of metals. J. Mater. Res. 2010, vol. 25, no. 7, pp. 1215–1224.
26. Kuznetsov V.A., Gromov V.E., Simakov V.P. Generator moshchnykh impul’sov toka [High power pulse generator]. Certificate of authorship USSR no. 884092. Byulleten ̕ izobretenii. 1981, no. 43. (In Russ.).
27. Kuznetsov V.A., Gromov V.E. Effective high power pulse generator. Izv. vuz. Elektromekhanika. 1986, no. 6, pp. 122–124. (In Russ.).
28. Zhmakin Yu.D., Zagulyaev D.V., Konovalov S.V., Kuznetsov V.A., Gromov V.E. High power current pulse generator for intensification of metal forming. Izvestiya. Ferrous Metallurgy. 2008, no. 8, pp. 42–44. (In Russ.).
29. Kuznetsov V.A., Polkovnikov G.D., Kuznetsova E.S., Gromov V.E. Development of automatic control system for electrostimulated drawing using high power current pulses. In: Trudy vos’moi Vserossiiskoi nauchno-prakticheskoi konferentsii “Avtomatizirovannyi elektroprivod i promyshlennaya elektronika” [Proceedings of the 8th All-Russ. Sci. and Pract. Conf. “Automated Electric Drive and Industrial Electronics”]. Ostrovlyanchik V.Yu. ed. Novokuznetsk: ITs SibGIU, 2018, pp. 132–138. (In Russ.).
30. Onishchenko G.B., Aksenov M.I., Grekhov V.P. Avtomatizirovannyi elektroprivod promyshlennykh ustanovok [Automated electric drive of industrial units]. Onishchenko G.B. ed. Мoscow: RASKhN, 2001, 520 p. (In Russ.).
Review
For citations:
Kuznetsov V.A., Polkovnikov G.D., Gromov V.E., Kuznetsova V.A., Peregudov O.A. High power current pulse generator based on reversible thyristor converter. Izvestiya. Ferrous Metallurgy. 2019;62(12):964-971. (In Russ.) https://doi.org/10.17073/0368-0797-2019-12-964-971