Генератор мощных импульсов тока с использованием реверсивного тиристорного преобразователя
Аннотация
Об авторах
В. А. КузнецовРоссия
к.т.н., доцент кафедры электротехники, электропривода и промышленной электроники
654007, Кемеровская обл., Новокузнецк, ул. Кирова, 42
Г. Д. Полковников
Россия
магистрант кафедры электротехники, электропривода и промышленной электроники
654007, Кемеровская обл., Новокузнецк, ул. Кирова, 42
В. Е. Громов
Россия
д.ф.-м.н., заведующий кафедрой естественнонаучных дисциплин им. В.М. Финкеля
654007, Кемеровская обл., Новокузнецк, ул. Кирова, 42
Е. С. Кузнецова
Россия
к.т.н., доцент кафедры электротехники, электропривода и промышленной электроники
654007, Кемеровская обл., Новокузнецк, ул. Кирова, 42
О. А. Перегудов
Россия
к.т.н., помощник ректора по молодежной политике
644050, Омск, пр. Мира, 11
Список литературы
1. Спицын В.И., Троицкий О.А. Электропластическая деформация металла. – М.: Наука, 1985. – 160 с.
2. Климов К.М., Невиков И.И. К вопросу об электропластическом эффекте // Проблемы прочности. 1984. № 2. С. 98 – 103.
3. Беклемишев Н.Н. Обработка проводящих материалов локально неоднородным электромагнитным полем // Электротехника. 1982. Т. 53. № 11. С. 113 – 117.
4. Климов К.М., Шнырев Г.Д., Новиков И.И. Изменение пластичности вольфрама под влиянием электрического тока // Металловедение и термическая обработка металлов. 1977. Т. 19. № 1. С. 58, 59.
5. Климов К.М., Шнырев Г.Д., Новиков И.И., Исаев А.В. Электростимулированная прокатка в ленту микронных сечений из вольфрама и его сплавов // Изв. АН СССР. Серия Металлы. 1975. № 4. С. 143, 144.
6. Yongda Ye, Song-Zhu Kure-Chu, Zhiyan Sun, Xiaopei Li, Haibo Wang, Guoyi Tang. Nanocrystallization and enhanced surface mechanical properties of commercial pure titanium by electropulsing-assisted ultrasonic surface rolling // Materials & Design. 2018. Vol. 149. No. 5. P. 214 – 227.
7. Chen Long, Wang Haibo, Liu Dan, Ye Xiaoxin, Li Xiaoliui, Tang Guojil. Effects of electropulsing cutting on the quenched and tempered 45 steel rods // Journal of Wuhan University of Technology-Mater. 2018. Vol. 33. P. 204 – 211
8. Ruikun Zhang, Xiaohui Li, Jie Kuang, Xiaopei Li & Guoyi Tang, Texture modification of magnesium alloys during electropulse treatment // Materials Science and Technology. 2017. Vol. 33. P. 1421 – 1427.
9. Xiaopei Li, Xiaohui Li, Yongda Ye, Ruikun Zhang, Song-Zhu KureChu, Guoyi Tang. Deformation mechanisms and recrystallization behavior of Mg – 3Al – lZn and Mg – lGd alloys deformed by electroplastic-asymmetric rolling // Materials Science & Engineering A. 2019. Vol. 742. P. 722 – 733.
10. Yong-Da Ye, Xiao-Pei Li, Zhi-Yan Sun, Hai-Bo Wang, Guo-Yi Tang. Enhanced surface mechanical properties and microstructure evolution of commercial pure titanium under electropulsing-assisted ultrasonic surface rolling process // The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature. 2018. Vol. 31. No. 12. P. 1272 – 1280.
11. Tang G., Zhang J., Yan Y., Zhou H., Fang W. The engineering application of the electroplastic effect in the cold-drawing of stainless steel wire // J. Mater. Process. Technol. 2003. Vol. 137. No. 1. P. 96 – 99.
12. Kozlov A., Mordyuk B., Chemyashevsky A. On the additivity of acoustoplastic and electroplastic effects // Mater. Sci. Eng. A. 1995. Vol. 190. No. 1. P. 75 – 79.
13. Brandt J. Ruszkiewicz, Tyler Grimm, lhab Ragai, Laine Mears, John T. Roth a review of electrically-assisted manufacturing with emphasis on modeling and understanding of the electroplastic effect // Journal of Manufacturing Science and Engineering. 2017. Vol. 139. No. 11. P. 110801-1 – 110801-15.
14. Fan G., Sun F., Meng X., Gao L., Tong G. Electric hot incremental forming of Ti – 6A1 – 4V titanium sheet // Int. J. Adv. Manuf. Technol. 2010. Vol. 49. No. 9-12. P. 941 – 947.
15. Fan G., Gao L., Hussain G., Wu Z. Electric hot incremental forming: a novel technique // Int. J. Mach. Tools Manuf. 2008. Vol. 48. No. 15. P. 1688 – 1692.
16. Shi X., Gao L., Khalatbari H., Xu Y., Wang H., Jin L. Electric hot incremental forming of low carbon steel sheet: accuracy improvement // Int. J. Adv. Manuf. Technol. 2013. Vol. 68. No. 1-4. P. 241 – 247.
17. Bao W., Chu X., Lin S., Gao J. Experimental investigation on formability and microstructure of AZ31B alloy in electropulse-assisted incremental forming // Mater. Des. 2015. No. 87. P. 632 – 639.
18. Honarpisheh М., Abdolhoseini М., Amini S. Experimental and numerical investigation of the hot incremental forming of Ti – 6A1 – 4V sheet using electrical current // Int. J. Adv. Manuf. Technol. 2016. Vol. 83. No. 9-12. P. 2027 – 2037.
19. Xu D., Lu В., Cao Т., Zhang H., Chen J., Long H., Cao J. Enhancement of process capabilities in electrically-assisted double sided incremental forming // Mater. Des. 2016. No. 92. P. 268 – 280.
20. Liu R., Lu B., Xu D., Chen J., Chen F., Ou H., Long H. Development of novel tools for electricity-assisted incremental sheet forming of titanium alloy // Int. J. Adv. Manuf. Technol. 2016. Vol. 85. No. 5-8. P. 1137 – 1144.
21. Xie H., Dong X., Peng F., Wang Q., Liu K., Wang X., Chen F. Investigation on the electrically-assisted stress relaxation of AZ31B magnesium alloy sheet // J. Mater. Process. Technol. 2016. No. 227. P. 88 – 95.
22. Adams D., Jeswiet J. Single-point incremental forming of 6061-T6 using electrically assisted forming methods // Proc. Inst. Mech. Eng. 2014. Vol. 228. No. 7. P. 757 – 764.
23. Valoppi B., Egea A.J.S., Zhang Z., Rojas H.A.G., Ghiotti A., Bruschi S., Cao J. A hybrid mixed double-sided incremental forming method for forming Ti6A14V alloy // CIRP Aim. Manuf. Technol. 2016. Vol. 65. No. 1. P. 309 – 312.
24. Nguyen-Tran H., Oh H., Hong S., Han H.N., Cao J., Ahn S., Chun D. A review of electrically-assisted manufacturing // Int. J. Precis: Eng. Manuf. Green Technol. 2015. Vol. 2. No. 4. P. 365 – 376.
25. Guan L., Tang G., Chu P.K. Recent advances and challenges in electroplastic manufacturing processing of metals // J. Mater. Res. 2010. Vol. 25. No. 7. P. 1215 – 1224.
26. А.c. № 884092 СССР. Генератор мощных импульсов тока / В.А. Кузнецов, В.Е. Громов, В.П. Симаков. Бюл. изобр. 1981. № 43.
27. Кузнецов В.А., Громов В.Е. Экономичный тиристорный генератор мощных импульсов тока // Изв. вуз. Электромеханика. 1986. № 6. С. 122 – 124.
28. Жмакин Ю.Д., Загуляев Д.В., Коновалов С.В., Кузнецов В.А., Громов В.Е. Генератор мощных токовых импульсов для интенсификации обработки металлов давлением // Изв. вуз. Черная металлургия. 2008. № 8. С. 42 – 44.
29. Кузнецов В.А., Полковников Г.Д., Кузнецова Е.С., Громов В.Е. Разработка системы автоматического управления электростимулированным волочением с использованием мощных импульсов тока. – В кн.: Труды восьмой Всероссийской научно-практической конференции «Автоматизированный электропривод и промышленная электроника» / Под ред. В.Ю. Островлянчика. – Новокузнецк: ИЦ СибГИУ, 2018. С. 132 – 138.
30. Онищенко Г.Б., Аксенов М.И., Грехов В.П. Автоматизированный электропривод промышленных установок / Под общ. ред. Г.Б. Онищенко. – М.: РАСХН, 2001. – 520 с.
Рецензия
Для цитирования:
Кузнецов В.А., Полковников Г.Д., Громов В.Е., Кузнецова Е.С., Перегудов О.А. Генератор мощных импульсов тока с использованием реверсивного тиристорного преобразователя. Известия высших учебных заведений. Черная Металлургия. 2019;62(12):964-971. https://doi.org/10.17073/0368-0797-2019-12-964-971
For citation:
Kuznetsov V.A., Polkovnikov G.D., Gromov V.E., Kuznetsova V.A., Peregudov O.A. High power current pulse generator based on reversible thyristor converter. Izvestiya. Ferrous Metallurgy. 2019;62(12):964-971. (In Russ.) https://doi.org/10.17073/0368-0797-2019-12-964-971