CREEP RESISTANCE OF FERRITIC-MARTENSITIC STEEL 16Cr12MoWSiVNbB (EP-823)
https://doi.org/10.17073/0368-0797-2019-4-290-302
Abstract
Base characteristics of ferritic-martensitic heat resisting steels with 12 % of chrome are parameters of their strength and creep resistance at temperatures of 600 – 750 °С. Steel 16Cr12MoWSiVNbB (EP-823) is considered as the basic material for manufacturing environments fuel rods (TVEL) of a developed reactor with natural safety of BRESTtype. In the literature, there are data about its mechanical characteristics for tensile tests in a range of temperatures of 20 – 750 °С and the limited characteristics of rupture strength. Data on its creep velocity is absent. Laws of creep of steel EP-823 were investigated on metal of three heats with weight of 3 kg. The compression tests at air were applied for cylindrical samples of 5 ÷ 6 mmat temperatures of 600 – 760 °С and stresses of 70 – 310 MPa. The base of compression tests did not exceed 11 hours. The structure after quenching and tempering consisted of tempered martensite and 6 – 12 vol. % of delta-ferrite, the grain size was less 20 μm. It is shown, that the description of creep tests results in double logarithmic (log (σ) – log (έ)) coordinates provides the best concurrence of results of approximation and experiment, than in half-logarithmic (σ – log (έ)). The analysis of parametrical dependences on Hollomon’s PS = (T/1000)[CS – log (έ) and to Larsen-Miller’s PE = (T/1000)[СE – log (σ)] has allowed to find the equations for creep velocity for the set pressure level of 100 – 220 MPa in the form of log (έ) = –19,355 + 9,17 (T/1000) log (σ) and ultimate strength of creep under the set admissions for creep velocity of 0,01 – 1 %/hour in the form of log (σ) = 4,304 – – 0,109 (T/1000) [20 – log (έ)]. Calculations of ultimate strength of creep and creep velocity on pair models and models of Hollomon (Larsen-Miller) give close results, but the preference should be given the second ones as these models consider all three varied factors. Data of control tests under the scheme of a tensile in the same conditions are cited. It is shown, that between results of tests on compression and on tensile at definition of durability characteristics, there is the linear dependence expressed by the equation σ0.2 at compression = 1.3σ0.2 at tensile. At the analysis of creep it has been established, that creep velocity for steel of one grade (09Cr12W3NbB) and for one heat at different type of loading (tensile or compression) have similar values while creep velocities for steel of one grade (EP-823), but of different heats even at one type of loading – compression, can differ substantially.
About the Authors
M. Yu. BelomyttsevRussian Federation
Dr. Sci. (Eng.), Professor of the Chair “Metallography and Physics of Strength”
Moscow
V. G. Molyarov
Russian Federation
Cand. Sci. (Eng.), Senior Researcher, Deputy Head of Department of Materials Science and Welding of Oil Equipment
Moscow
References
1. Beskorovainyi N.M., Kalin B.A., Platonov P.A., Chernov I.I. Konstruktsionnye materialy yadernykh reaktorov [Constructional materials of nuclear reactors]. Moscow: Energoatomizdat, 1995, 704 p. (In Russ.).
2. Solonin M.I., Reshetnikov F.G., Ioltukhovskii A.G., Nikulina A.V. New constructional materials for active zones of nuclear power installations. Fizika i khimiya obrabotki materialov. 2001, no. 4, pp. 17–27. (In Russ.).
3. Fizikoenergeticheskii institut: letopis’ v sud’bakh [Institute of physics and power engineering: Annals in people destiny]. Zrodnikov A.V. ed. Obninsk: GNTs FR FEI, 2006, 334 p. (In Russ.).
4. Klueh R., Harries D. High chromium ferritic and martensitic steels for nuclear applications. Bridgeport, USA: ASTM stock number: MONO3, 2001, 217 p.
5. Yan Wei, Wang Wei, Shan Yiyin, Yang Ke, Sha Wei. 912Cr HeatResistant Steels. Engineering Materials. Springer, 2015, 223 p.
6. Gerasimov V.V., Monakhov A.S. Materialy yadernoi tekhniki. Uchebnik dlya vuzov [Materials of nuclear technics. Textbook for universities]. Moscow: Energoatomizdat, 1982, 312 p. (In Russ.).
7. Beskorovainyi N.M., Belomyttsev Yu.S., Abramovich M.D., Ivanov V.K., Shulepov V.I. Konstruktsionnye materialy yadernykh reaktorov. V 2kh chastyakh. Ch. II: Struktura, svoistva, naznacheniya [Constructional materials for nuclear reactors. In 2 Parts. Part 2: Structure, properties, application]. Moscow: Atomizdat, 1977, 256 p. (In Russ.).
8. Ibragimov Sh.Sh., Kirsanov V.V., Pyatiletov Yu.S. Radiatsionnye povrezhdeniya metallov i splavov [Irradiation damage of metals and alloys]. Moscow: Energoatomizdat, 1985, 240 p. (In Russ.).
9. Klueh R.L. Elevatedtemperature ferritic and martensitic steels and their application to future nuclear reactors. Oak Ridge, Tennessee, USA, 2004, 66 p.
10. Fizicheskoe materialovedenie. Uchebnik dlya vuzov. Tom 6: Kalin B.A., Plato nov P.A., Tuzov Yu.V., Chernov I.I., Shtrombakh Ya.I. Konstruktsionnye materialy yadernoi tekhniki [Physical material science. Textbook for universities. Vol. 6. Constructional materials of nuclear techniques]. Kalin B.A. ed. Moscow: NIYaU MIFI, 2012, 736 p. (In Russ.).
11. Frost Brian R.T. Nuclear fuel elements: Design, Fabrication and Performance. Oxford, 1982. (Russ. ed.: Frost B. Tvely yadernykh reaktorov. Moscow: Energoatomizdat, 1986, 248 p.).
12. Lanskaya K.A. Vysokokhromistye zharoprochnye stali [High-chromium heat resisting steels]. Moscow: Metallurgiya, 1976, 216 p. (In Russ.).
13. Khimushin F.F. Nerzhaveyushchie stali [Stainless steels]. Moscow: Metallurgiya, 1967, 800 p. (In Russ.).
14. Votinov S.N., Golovin I.S., Kolotushkin V.P. Development of perspective materials for fuel rods cover of nuclear reactors on fast neutrons. In: Atomnye elektrostantsii Rossii. 60 let atomnoi promyshlennosti [Atomic power stations of Russia. 60 years of the nuclear industry]. Moscow, 2005, pp. 313–335. (In Russ.).
15. Mal’tsev V.V., Ogorodov A.M., Roslyakov V.F., Sergeev G.A., Sheinkman A.G. Operating experience of fuel rods and fuel assembly wrappers (FAW) of reactor BN-600. In: Trudy Mezhdunarodnoi konferentsii po radiatsionnomu materialovedeniyu, Alushta, 22 – 25 maya 1990 g. [Papers of Int. Conf. on Radiating Material Science. Alushta. 22 – 25 on May, 1990]. Vol. 4. Kharkov: KhFTI, 1990, pp. 105–112. (In Russ.).
16. Tselishchev A.V., Ageev V.S., Budanov Yu.P., Mitrofanova N.M. Development of structural steel for fuel elements and fuel assemblies of sodium-cooled fast reactors. Atomic Energy. 2010, vol. 108, no. 4, pp. 274–280.
17. Solonin M.I., Ioltukhovskii A.G., Bibilashvili Yu.K., Leont’evaSmirnova M.V., Medvedeva E.A., Mitrofanova N.M., Budanov Yu.P., Chernov V.M., Tselishchev A.V. Problems of creation and development of stainless steels for details of active zones of nuclear reactors on fast neutrons and of thermonuclear reactor of synthesis. Fizika i khimiya obrabotki materialov. 2001, no. 5, pp. 5–13. (In Russ.).
18. Dvoriashin A.M., Porollo S.I., Konobeev Yu.V., Garner F.A. Influence of high dose neutron irradiation on microstructure of EP-450 ferritic–martensitic steel irradiated in three Russian fast reactors. Journal of Nuclear Materials. 2004, vol. 329-333, pp. 319–323.
19. Odette G.R., Alinger M.J., Wirth B.D. Recent developments in irradiation-resistant steels. Annual Review of Materials Research. 2008, vol. 38, pp. 471–503.
20. Kupriiyanova Y.E., Bryk V.V., Borodin O.V., Kalchenko A.S., Voyevodin V.N., Tolstolutskaya G.D., Garner F.A. Use of double and triple-ion irradiation to study the influence of high levels of helium and hydrogen on void swelling of 8–12 % Cr ferritic-martensitic steels. Journal of Nuclear Materials. 2016, vol. 468, pp. 264–273.
21. Rusanov A.E., Troyanov V.M., Belomyttsev Yu.S., Shulepin S.V. Development and research of covering steels for fuel rods of nuclear power stations with heavy heat carrier. In: Sbornik dokladov konf. “Tyazhelye zhidkometallicheskie teplonositeli v yadernykh tekhnologiyakh” [Proc. of the Conf. “Heavy Liquid Metal Heat Carriers in Nuclear Technologies”]. Vol. 2. Obninsk. GNTs RF-FEI, 1999, pp. 673–685. (In Russ.).
22. Roy A.K., Hossain M.K. Cracking of martensitic alloy EP-823 under controlled potential. Journal of Materials Engineering and Performance. 2006, vol. 15, no. 3, pp. 336–344.
23. Maloy S.A., Romero T., James M.R. Tensile testing of EP-823 and HT-9 after irradiation in STIP II. Journal of Nuclear Materials. 2006, vol. 356, no. 1-3, pp. 56–61.
24. Voyevodin V.N., Karpov S.A., Kopanets I.E., Ruzhytskyi V.V., Tolstolutskaya G.D., Garner. F.A. Influence of displacement damage on deuterium and helium retention in austenitic and ferritic-martensitic alloys considered for ADS service. Journal of Nuclear Materials. 2016, vol. 468, pp. 274–280.
25. Ioltukhovskii A.G., Leont’eva-Smirnova M.V., Chernov V.M., Tsvelev V.V., Solonin M.I., Golovanov V.N., Shamardin V.K. Development of new-generation high-temperature 12 % chromium steel 16Kh12v2FTaR with rapid decline of the induced activity for the atomic power engineering of Russia. Metal Science and Heat Treatment. 2002, vol. 44, no. 11-12, pp. 482–486.
26. Ioltukhovskiy A.G., Blokhin A.I., Budylkin N.I., Chernov V.M., Leont’eva-Smirnova M.V., Mironova E.G., Medvedeva E.A., Solonin M.I., Porollo S.I., Zavyalsky L.P. Material science and manufacturing of heat-resistant reduced-activation ferritic-martensitic steels for fusion. Journal of Nuclear Materials. 2000, vol. 283-287, pp. 652–656.
27. Ioltukhovskiy A.G., Leonteva-Smirnova M.V., Solonin M.I., Chernov V.M., Golovanov V.N., Shamardin V.K., Bulanova T.M., Povstyanko A.V., Fedoseev A.E. Heat resistant reduced activation 12 % Cr steel of 16Cr12W2VTaB type-advanced structural material for fusion and fast breeder power reactors. Journal of Nuclear Materials. 2002, vol. 307-311, pp. 532–535.
28. Ioltukhovskii A.G., Leont’eva-Smirnova M.V., Chernov V.M., Tsvelev V.V., Solonin M.I., Golovanov V.N., Shamardin V.K. Development of heat resisting 12 % chromic steel 16Cr12W2VТаB of new generation with fast recession of the induced activity for needs of atomic engineering of Russia. Voprosy atomnoi nauki i tekhniki (Khar’kov). Seriya: Fizika radiatsionnykh povrezhdenii i radiatsionnoe materialovedenie. 2003, no. 6. pp. 60–64. (In Russ.).
29. Nikitina A.A., Ageev V.S., Chukanov A.P., Tsvelev V.V., Porezanov N.P., Kruglov O.A. R&D of ferritic-martensitic steel EP450 ODS for fuel pin claddings of prospective fast reactors Journal of Nuclear Materials. 2012, vol. 428, pp. 117–124.
30. Klueh R. L., Ehrlich K., Abe F. Ferritic/martensitic steels: Promises and problems. Journal of Nuclear Materials. 1992, vol. 191, pp. 116–124.
31. Roy A. K., Kukatla S. R., Yarlagadda B., Potluri V. N., Lewis M., O’Toole B. Tensile properties of martensitic stainless steels at elevated temperatures. Journal of Materials Engineering and Performance. 2005, vol. 14 (2), pp. 212–218.
32. Porollo S.I., Dvoriashin A.M., Konobeev Yu.V., Garner F.A. Microstructure and mechanical properties of ferritic/martensitic steel EP-823 after neutron irradiation to high doses in BOR-60. Journal of Nuclear Materials. 2004, vol. 329-333, pp. 314–318.
33. Maloy Stuart A., Romero T., James M.R., Dai Y. Tensile testing of EP-823 and HT-9 after irradiation in STIP II. Journal of Nuclear Materials. 2006, vol. 356, pp. 56–61.
34. Dragunov Yu.G., Zubchenko A.S., Kashirskii Yu.V., Degtyarev A.F., Zharov V.V., Koloskov M.M,, Orlov A.S., Skorobogatykh V.N. Marochnik stalei i splavov [Handbook of steels and alloys]. Dragunov Yu.G., Zubchenko A.S. eds. Moscow: Mashinostroenie, 2015, 1216 p. (In Russ.).
35. Leont’eva-Smirnova M.V., Agafonov A.N., Ermolaev G.N., Ioltukhovskii A.G., Mozhalov E.M., Reviznikov L.I., Tsvelev V.V., Chernov V.M., Bulanova T.M., Golovanov V.N., Ostrovskii Z.O., Shamardin V.K., Blokhin A.I., Ivanov M.B., Kozlov E.V., Kolobov Yu.R., Kardashev B.K. Microstructure and mechanical properties of reduced-activated ferritic-martensitic steel EК-181 (RUSFER-EK-181). Perspektivnye materialy. 2006, no. 6, pp. 40–52. (In Russ.).
36. Solonin M.I., Ioltukhovskii A.G., Leont’eva-Smirnova M.V., Bibilashvili Yu.K., Golovanov V.N., Kondrat’ev V.P., Chernov V.M., Shamardin V.K. Maloaktiviruemaya zharoprochnaya radiatsionnostoikaya stal’ [Heat-resistant reduced-activated irradiation-resistance steel]. Patent RF no. 2211878. Publ. 10.09.2003. (In Russ.).
37. Zhongfei Ye, Wang Pei, Li Dianzhong, Zhang Yutuo, Li Yiyi. Effect of carbon and niobium on the microstructure and impact toughness of a high silicon 12 % Cr ferritic/martensitic heat resistant steel. Materials Science and Engineering A. 2014, vol. 616, pp. 12–19.
38. Zelenskii G.K., Ioltukhovskii A.G., Leont’eva-Smirnova M.V., Naumenko I.A., Tolkachenko S.A. Corrosion resistance of fuel element steel cladding in a lead coolant. Metal Science and Heat Treatment. 2007, vol. 49, no. 11-12, pp. 533–538.
39. Ye Zhongfei, Wang Pei, Li Dianzhong, Li Yiyi. M23C6 precipitates induced inhomogeneous distribution of silicon in the oxide formed on a high-silicon ferritic/martensitic steel. Scripta Materialia. 2015, vol. 97, pp. 45–48.
40. Bobkov V.P., Blokhin A.I., Rumyantsev V.N., Solov’ev V.A., Tarasikov V.P. Spravochnik po svoistvam materialov dlya perspektivnykh reaktornykh tekhnologii. T. 5: Svoistva reaktornykh stalei i splavov [Handbook on properties of materials for perspective nuclear reactor technologies. Vol. 5. Properties of nuclear reactor steels and alloys.]. Poplavskii V.M. ed. Moscow: IzdAT, 2014, 584 p. (In Russ.).
41. Vatulin A.V. Constructional and fuel materials of active zones of nuclear reactors (condition and direction of development). In: Toplivnyi tsikl yadernoi energetiki Rossii. Nauchnye problemy i perspektivy [The fuel cycle of nuclear power of Russia. Scientifc problems and prospects]. Moscow: FGUP VNIINM, 2006, pp. 113–130. (In Russ.).
42. Ioltukhovskii A.G., Lanskaya K.A,. Belomyttsev Yu.S., Saratovskii L.N. Investigation of heat treatment conditions of 12 %- chromic steel EP-823 with reference to operating conditions of fuel assembly wrappers (FAW) of reactor BN-600. Voprosy atomnoi nauki i tekhniki. Ser. Atomnoe materialovedenie. 1985. Issue 2 (19), pp. 65–70. (In Russ.).
43. Bibilashvili Yu.K., Ioltukhovskii A.G., Kazennov Yu.I., Budanov Yu.P., Chernov V.M. Service characteristics of 12 % chromic steels with reference to operating conditions of elements of active zones of nuclear reactors with lead and lead – bismuth heat carrier. In: Sbornik dokladov konferentsii “Tyazhelye zhidkometallicheskie teplonositeli v yadernykh tekhnologiyakh” [Proc. of the Conf. “Heavy Metal Liquid Heat Carriers in Nuclear Technology”]. Vol. 2. Obninsk: GNTs RF-FEI, 1999, pp. 782–791. (In Russ.).
44. Ioltukhovskii A.G., Leont’eva-Smirnova M.V., Ageev V.S., Golovanov V.N., Kondrat’ev V.P., Shamardin V.K., Chernov V.M. Influence of initial structural condition on propensity of 12 % of chromic steel to embrittlement under irradiation. In: Tret’ya mezhotraslevaya konferentsiya po reaktornomu materialovedeniyu. Dmitrovgrad. 27 – 30 oktyabrya 1992 g. [The 3th Interbranch Russian Conf. on Reactor Material Science. October, 27–30, 1994, Dimitrovgrad]. Vol. 2. Dmitrovgrad: GNTs RF-NIIAR, 1994, pp. 56–68. (In Russ.).
45. Khabarov V.S., Porollo S.I. Influence of initial heat treatment on mechanical properties of irradiated ferritic-martensitic steels EI-842, EP-450 and EP-823. In: Sbornik dokladov Pyatoi mezhotraslevoi konferentsii po reaktornomu materialovedeniyu. Dmitrovgrad. 8 – 12 sentyabrya 1997 g. [Proc. of the 5th Interbranch Russian Conf. on Reactor Material Science. September 8–12, 1997, Dimitrovgrad]. Vol. 2. Part 2. Dmitrovgrad: GNTs RF-NIIAR, 1998, pp. 123–135. (In Russ.).
46. Rozenberg V.M. Osnovy zharoprochnosti metallicheskikh materialov [Basics of thermal stability of metal materials]. Moscow: Metallurgiya, 1973, 328 p. (In Russ.).
47. Shtremel’ M.A. Prochnost’ splavov. Chast’ 2: Deformatsiya [Alloy strength. Part 2. Deformation]. Moscow: ID MISiS, 1999, 518 p. (In Russ.).
48. Shlyakman B.M., Yampol’skii O.N., Ratushev D.V. A method for determining constant C in the Hollomon parameter. Metal Science and Heat Treatment. 2011, vol. 52, no. 9-10, pp. 451–453.
49. Obraztsov S.M., Shimkevich A.L., Obraztsov S.M, Shimkevich A.L. Bootstrep-identifcation of exponential dependence. Zavodskaya laboratoriya. 2000, vol. 66, no. 1, pp. 62–64. (In Russ.).
50. Belomyttsev M.Yu., Mordashov S.V. Regularities of short-term creep of St3 steel. Izvestiya. Ferrous Metallurgy. 2015, no. 11, pp. 798–801. (In Russ.).
Review
For citations:
Belomyttsev M.Yu., Molyarov V.G. CREEP RESISTANCE OF FERRITIC-MARTENSITIC STEEL 16Cr12MoWSiVNbB (EP-823). Izvestiya. Ferrous Metallurgy. 2019;62(4):290-302. (In Russ.) https://doi.org/10.17073/0368-0797-2019-4-290-302