QUALITY IMPROVEMENT OF CAST CYLINDRICAL BAR OF VACUUM INDUCTION MELTING FROM INCONEL 718 ALLOY AT PJSC “RUSPOLIMET”
https://doi.org/10.17073/0368-0797-2019-4-257-262
Abstract
The analysis of technological processes of smelting and casting of cylindrical bars from Inconel 718 alloy, obtained in a vacuum induction furnace at PJSC “Ruspolimet”, was performed. The existing technology does not ensure the production of a sound bar of the required quality due to the presence of porosity in the axial zone, and also due to liquation at the macro level of elements such as chromium, nickel, niobium. The results have shown the need to adjust the parameters of casting and solidification of bars from the Inconel 718 alloy. The task to get high-quality sound bar was set without changing the main technical parameters of production, namely: type of furnace – vacuum induction furnace with capacity of 3 tons; material of the furnace lining – ceramics based on aluminum oxide Al2O3 ; type of the casting mold – cylindrical mold for bar diameter of410 mm; diameter of crystallizer for vacuum-arc remelting –450 mm. With the use of the Thermo-Calc program (version 2017a), the solidus temperatures for the equilibrium solidification process and for the non-equilibrium process were clarified, which were 1211 °С and 1091 °С, respectively. Based on the results obtained, the casting speed (SCM LP) system corrects casting speed by reducing the diameter of the casting nozzle from 32 to28 mm and casting temperature by reducing it from 1470 to1460 °C. According to the corrected technology, a batch of bars has been smelted. From the bar of the first batch, transverse templates were selected to determine the chemical composition and longitudinal temp lates for metallographic analysis. Metallographic studies have been carried out that suggest a decrease in porosity of axial zone of the bar and a decrease in phase separation at the macro level. Based on the results obtained, the authors proposed to introduce approp riate changes in casting technology. It is shown that computer modeling of metallurgical processes of metal casting and crystallization allows developing a technology of obtaining a high-quality bar already at the first redistribution, while avoiding appearance of products that do not meet customer requirements.
About the Authors
A. I. DemchenkoRussian Federation
Master of main Production
E. N. Korzun
Russian Federation
Cand. Sci. (Eng.), Assist. Professor, Head of R & D Department
E. A. Chernyshov
Russian Federation
Dr. Sci. Eng, Professor of the Chair “Metallurgical Technology and Equipment”
References
1. Xiao L., Chen D.L., Chaturvedi M.C. Effect of boron on the lowcycle fatigue behavior and deformation structure of Inconel 718 at 650 °C. Metallurgical and Materials Transactions A. 2004, November, vol. 35, no. 1, pp. 3477–3487.
2. Eich A., Franz H., Scholz H., Kemmer H., Brückmann G. Gaseous treatment in vacuum induction degassing (VID) unit for low carbon alloys. 1st International Conference on Ingot Casting, Rolling and Forging, 2012, pp. 1–6.
3. Choudhury A., Kemmer H., Donachie M., Donachie S., Erickson G.L. Vacuum induction melting. ASM Handbook. Vol. 15. Handbook Committee, 2008, pp. 1–8.
4. Edward A. Loria. Recent developments in the progress of Superalloy 718. JOM. 1992, June, pp. 33–36.
5. Bartosinski M., Magee John H., Friedrich B. Improving the chemical homogeneity of austenitic and martensitic stainless steels during nitrogen alloying in the pressure electro slag remelting (PESR) process. Electronic resource. Available at URL: http://www.metallurgie.rwthaachen.de/old/images/pages/publikationen/ aertosinskimae_id_4297.pdf. (Accessed 03.05.2018).
6. Kronovsky G.A., Sieslak M.J., Headley T.J., Romig A.D., Hammetter Jr., Hammetter W.F. Inconel 718: A solidifcation diagram. Metallurgical Transactions A. 1989, vol. 20. Issue 10, pp. 2149–2158.
7. Alok Choudhury. State of the art of superalloy production for aerospace and other application using VIM/VAR or VIM/ESR. ISIJ International. 1992, vol. 32, no. 5, pp. 563–574.
8. Talukder Alam, Peter J. Felfer, Mahesh Chaturvedi, Leigh T. Stephenson, Matthew R. Kilburn, Julie M. Cairney. Segregation of B, P, and C in the Ni-based superalloy, Inconel 718. Metallurgical and Materials Transactions A. 2012, vol. 43A, pp. 2183–2191.
9. Kablov E.N. Litye lopatki gazoturbinnykh dvigatelei [Cast blades of gas turbine engines]. Мoscow: MISSIS, 2001, 632 p. (In Russ.).
10. Linchevskii B.V. Vakuumnaya induktsionnaya plavka [Vacuum induction melting]. Мoscow: Metallurgiya, 1975, 240 p. (In Russ.).
11. Baum B.A., Larionov V.N., Kovalenko L.V., Tyagunov G.V., Kuleshova E.A., Baryshev E.E., Tret’yakova E.E., Kolotukhin E.V. Resursosberezhenie i uluchshenie sluzhebnykh kharakteristik otlivok iz zharoprochnykh nikelevykh splavov posredstvom vysokotemperaturnoi obrabotki rasplavov [Resource saving and improvement of service properties of castings of heat-resistant nickel alloys by means of high-temperature treatment of alloys] Electronic resource. Available at URL: https://viam.ru/public/fles/1991/1991-200908.pdf. (Accessed 03.05.2018). (In Russ.).
12. Efmov V.A. Teoreticheskie osnovy razlivki stali [Theoretical foundations of steel casting]. Кiev: Izd-vo Akademii nauk Ukrainskoi SSR, 1960, 180 p. (In Russ.).
13. Eron’ko S.P., Bykovskikh S.V. Razlivka stali: tekhnologiya, oborudovanie [Steel casting: technology, equipment]. Кiev: Tekhnika, 2003, 216 p. (In Russ.).
14. INTECO special melting technologies GmbH. Operation Guide. 8600 Bruck an der Mur AUSTRIA, 660 p.
15. Liu W.C., Yao M., Chen Z.L., Wang S.G. Niobium segregation in Inconel 718. Journal of Materials Science. 1999, vol. 34, no. 11, pp. 2583–2586.
16. Shved F.I. Slitok vakuumnogo dugovogo pereplava [Bar of vacuum arc remelting]. Chelyabinsk: OOO “Izd-vo Tat’yany Lur’e”, 2009, 428 p. (In Russ.).
17. Defekty stali [Steel defects]. Novokshchenova S.M., Vinograd M.I. eds. Мoscow: Metallurgiya, 1984, 199 p. (In Russ.).
18. Galkin A.N. Issledovanie vliyaniya teplofzicheskikh uslovii zatverdevaniya i formy slitka dlya polykh zagotovok na ego stroenie i raspredelenie nemetallicheskikh vklyuchenii: Avtoref. dis. … kand. tekh. nauk: 05.16.02 [Investigation of the influence of thermophysical conditions of solidifcation and bar shape for hollow billets on its structure and distribution of non-metallic inclusions: Extended Abstract of Cand. Sci. Diss.). Volgograd, 2015, 18 p. (In Russ.).
19. Kaputkina E.A. Atlas defektov stali [Atlas of steel defects]. Bernshtein M.L. ed. Мoscow: Metallurgiya, 1979, 188 p. (In Russ.).
20. Zubarev K.A, Kotel’nikov G.I., Titova K.O., Semin A.E., Mikhailov M.A. Prediction of liquidus temperature of nickel-based complex alloyed steels. Izvestiya. Ferrous Metallurgy. 2016, vol. 59, no. 9, pp. 644–649. (In Russ.).
21. Valuev D.V. Razlivka i kristallizatsiya stali i splavov [Casting and crystallization of steel and alloys]. Tomsk: izd. Tomskogo politekhnicheskogo universiteta, 2009, 235 p. (In Russ.).
Review
For citations:
Demchenko A.I., Korzun E.N., Chernyshov E.A. QUALITY IMPROVEMENT OF CAST CYLINDRICAL BAR OF VACUUM INDUCTION MELTING FROM INCONEL 718 ALLOY AT PJSC “RUSPOLIMET”. Izvestiya. Ferrous Metallurgy. 2019;62(4):257-262. (In Russ.) https://doi.org/10.17073/0368-0797-2019-4-257-262