DISLOCATION STRUCTURE AND ITS COMPONENTS IN STEEL OF MARTENSITE CLASS
https://doi.org/10.17073/0368-0797-2015-1-61-70
Abstract
The regularities of dislocation accumulation at forming dislocation structure of deformed martensitic steel are established on the base of electron microscopy. The factors determining an intensity of dislo-
cation accumulation are revealed. Scalar dislocation density is divided into two components: density of geometrically necessary dislocations and density of statistically stored dislocations. The specifi c attention is given to geometrically necessary dislocations. Their accumulation in different substructure formations of the deformed steel is revealed. Critical grain sizes, when regularities of dislocation accumulation are changed, are determined
About the Authors
E. V. KozlovRussian Federation
Dr. Sci. (Phys.-math)., Professor, Head of the Chair of Physics
N. A. Popova
Russian Federation
Cand. Sci. (Eng.), Senior Researcher
N. A. Koneva
Russian Federation
Dr. Sci. (Phys.-math)., Professor
References
1. Ashby M.F. Phil. Mag. 1970. Vol. 21, pp. 399–424.
2. Courtney T.H. Mechanical behavior of materials. Boston,Toronto: McGraw – Hill International Editions, 2000. 732 p.
3. Hirth D., Lothe I. Theory of dislocations. Oxford. 1972. (Russ.ed.: Hirth D., Lothe I. Teoriya dislokatsii. Moscow: Atomizdat, 1972. 600 p.).
4. Koneva N.A., Kozlov E.V., Trishkina L.I., Lychagin D.V. The longrange stress fi eld, the curvature-torsion of the crystal lattice and the stage of plastic deformation. Measurement methods and results. In: Novye metody v fi zike i mekhanike deformiruemogo tverdogo tela
5. [New methods in physics and mechanics of deformable solids. Part I]. Panin V.E. ed. Tomsk: Izd-vo TGU, 1990, pp.83-93. (In Russ.).
6. Koneva N.A. Severe plastic deformation. Toward bulk production of nanostructured materials. Altan B.S. Ed. New York: Nova Science Publishers, Inc., 2005, pp. 249–274.
7. Kubin L.P., Mortcusen A. Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues. Scr. Mat. 2003. Vol. 48, pp. 119–125.
8. Gao H., Huang Y. Geometrically necessary dislocations and sizedependent plasticity. Scr. Mat. 2003. Vol. 48, pp. 113–118.
9. Koneva N.A., Zhukovskii S.P., Lapsker I.A. etc. The role of internal interfaces in the formation of dislocation structure and mechanical properties of single-phase polycrystalline. In: Fizika defektov poverkhnostnykh sloev materialov [Physics of defects of the surface layers of materials]. Romanov A.E. ed. Leningrad: FTI im. A.F. Ioffe, 1989, pp. 113–131. (In Russ.).
10. Koneva N.A., Kozlov E.V., Trishkina L.I. Internal fi eld sources, their screening and the fl ow stress. Mat. Sci. Eng. 2001. Vol. A319–321, pp. 156–159.
11. El-Dasher B.S., Adams B.L., Rollet A.D. Viewpoint: experimental recovery of geometrically necessary dislocation density in polycrystals. Scr. Mat. 2003. Vol. 48, pp. 141–145.
12. Conrad H. Ultrafi ne-Grain Metals, Syracuse Univ. Press, New York: 1970. (Russ.ed.: Conrad H. Sverkhmelkoe zerno v metallakh. Gordienko L.I. ed. Moscow: Metallurgiya, 1973, pp. 206–219.)
13. Kurdyumov G.V., Utevskii L.M., Entin R.I. Prevrashcheniya v zheleze i stali [Transformations in iron and steel]. Moscow: Nauka, 1977. 236 p. (In Russ.).
14. Bhadesia H.K. Bainite in steels. London: The Institute of Materials, 1992. 451 p.
15. Mulyukov R.R., Noskova N.I. Submikrokristallicheskie metally i splavy [Submicrocrystalline metals and alloys]. Ekaterinburg UrO RAN, 2003. 279 p. (In Russ.).
16. Valiev R.Z., Langdon T.G. Principles of equal-channel angular pressing as a processing tool for grain refi nement. Progr. Mat. Sci. 2006. Vol. 51, pp. 881–981.
17. Kozlov E.V., Koneva N.A., Popova N.A. Grain structure, geometrically necessary dislocations and second-phase particles in polycrystals of micro- and mesolevels. Physical Mesomechanics. 2009. Vol. 12, no. 5–6, pp. 280–292.
18. Kozlov E.V., Popova N.A., Koneva N.A. Size effect in the dislocation substructure of metal materials. Fundamental’nye problemy sovremennogo metallovedeniya. 2009. Vol. 6, no. 2, pp. 14–24. (In Russ.).
19. Koneva N.A., Kozlov E.V., Popova N.A. Infl uence of grain size and fragments on the dislocation density in metallic materials. Fundamental’nye problemy sovremennogo metallovedeniya. 2010. Vol. 7, no. 1, pp. 64–70. (In Russ.).
20. Koneva N.A., Kozlov E.V., Popova N.A. etc. Effect of a grain size on defects density and internal stresses in submicrocrystals. Mat. Sci. Forum. 2010. Vol. 633–634, pp. 121–128. 20. Koneva N.A., Popova N.A., Kozlov E.V. Critical grain sizes of micro- and mezolevel polycrystals. Bulletin of the Russian Academy of Sciences; Physics. 2010. Vol. 74, no. 5, pp. 592–596.
21. Kubin L.P., Fressengeas C., Ananthakrishna G. Collective behavior of dislocations in plasticity. In: Dislocations in Solids. Vol. 11. Nabarro F.N.R. and Duesbery M.S. Eds. Amsterdam, Tokyo: Elsevier, 2002, pp. 101–192.
22. Kuhlmann–Wilsdorf D. Phil. Mag. 1999. Vol. 79, no. 4, pp. 955–1008.
23. Koneva N.A., Popova N.A., Kozlov E.V. Critical grain sizes of micro-and mezolevel polycrystals. Bulletin of the Russian Academy of Sciences: Physics. 2010. Vol. 74, no. 5, pp. 592–596
24. Kozlov E.V., Trishkina L.I., Popova N.A., Koneva N.A. Dislocation physics in the multilevel approach to plastic deformation. Physical Mesomechanics. 2011. Vol. 14, no. 5–6, pp. 283–296.
25. Kozlov E.V., Koneva N.A., Zhdanov A.N. etc. Structure and deformation resistance of fcc of ultrafi ne-grained metals and alloys. Fizicheskaya mezomekhanika. 2004. Vol. 7, no. 4, pp. 93–113. (In Russ.).
26. Kozlov E.V., Koneva N.A., Popova N.A., Zhdanov A.N. Severe plastic deformation of copper: The state of grain boundaries and their triple junctions. Russian Metallurgy (Metally). 2010, no. 10, pp. 867–873.
27. Kozlov E.V., Koneva N.A., Teplyakova L.A. etс. Contact and barrier dislocation resistance and their effect on characteristics of slip and work hardening. Mat. Sci. Eng. 2001. Vol. A319–321, pp. 261–265.
28. Koneva N.A., Kozlov E.V., Popova N.A. Fedorisheva M.V. etc. Structure of triple junctions of grains, nanoparticles in them and bending-torsion in metal nanopolycrystals. Mat. Sci. Forum. 2008. Vol. 584–586, pp. 269–274.
Review
For citations:
Kozlov E.V., Popova N.A., Koneva N.A. DISLOCATION STRUCTURE AND ITS COMPONENTS IN STEEL OF MARTENSITE CLASS. Izvestiya. Ferrous Metallurgy. 2015;58(1):61-70. (In Russ.) https://doi.org/10.17073/0368-0797-2015-1-61-70