THE USE OF KALMAN FILTER IN AUTOMATIC CONTROL OF INDICATORS OF IRON ORES MAGNETIC CONCENTRATION
https://doi.org/10.17073/0368-0797-2018-5-372-377
Abstract
The paper presents the current state of the problems of automation and control data of wet magnetic concentration for iron ore mining and processing plants. Data on the measurement errors of modern analyzers and material composition of the pulp are considered. The possibility of using Kalman filter in order to obtain the most accurate information about the content of valuable component in concentrate and tailings of magnetic separator products is shown. The mathematical description of the dynamics of concentration indicators is given in state coordinates in the form of differential equations system. The author has selected maximum allowable and nominal values of the water flow in the separator bath and the rotation frequency of its drum as well as the corresponding data for the mass fraction of iron in magnetite concentrate and tailings, based on the reference information. With MATLAB program of computer simulation the nonlinear static characteristics were composed, reflecting the dependence of technological parameters of the magnetic concentration from control actions. The linearization dynamic model of the system is held using expansion in Taylor series in the neighborhood of the points, corresponding to a nominal operation mode. The transfer functions of control valve of water flow rate of induction motor rotating the drum were calculated. Standard deviations of control parameters affecting the separation process were determined. The calculated ratio are obtained for determining the covariance matrices of the system noise, describing dynamics of indicators of magnetic concentration, and the noise of their measurement by devices that control the content of magnetite iron in concentrate and tails. The presented algorithm of estimating the coordinates of the Kalman filter state consists of two stages: prediction of the system state and adjustment of the state vector. Simulation results of the MATLAB programming environment are presented in the form of time diagrams reflecting the dynamics of technological indicators of concentration, the evaluation of the Kalman filter and measurement error. The system has been considered in case of random changes of control actions. At the end of the article, the results are summed up, where it is reported that the Kalman filter should be used in tasks of automation and control of the iron ore concentration process.
About the Author
N. V. OsipovaRussian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair “Automation”
References
1. Detektor analizator rudonosnosti zhelezorudnoi pul’py [Detector analyzer ore iron ore pulp]. Available at URL: http://www.analyzator.su/ detector_rudonosnosti_pulpy.php (Accessed: 08.01.2018). (In Russ.).
2. Analizator soderzhaniya magnetita v pul’pe ASM¬1 [Analyzer of magnetite content in ASM-1pulp].Available at URL: http://www. rastr1.com/Analizator magnetita (Accessed: 08.01.2017). (In Russ.).
3. Voevoda A.A., Troshina G.V. Simulation of Kalman filter with the updated sequence in SIMULINK medium. Sbornik nauchnykh trudov NGTU. 2015, no. 2(80), pp. 7–17. (In Russ.).
4. Durgaryan I.S., Belova O.N., Lyaskovskaya I.V., Pashchenko E.F. Application of Kalman filter in multi-stage identification method. Vestnik mezhdunarodnoi akademii sistemnykh issledovanii. Informatika, ekologiya, ekonomika. 2016, vol. 18, no. 1, pp. 45–48. (In Russ.).
5. Lemeshko O.V. Kalman Filter. Theoretical basis and practical application. Vestnik magistratury. 2014, no. 6-1(33), pp. 5–8. (In Russ.).
6. Mohinder S. Grewal, Angus P. Andrews. Kalman filtering: theory and practice with MATLAB. Hoboken, 2015, 640 p.
7. Spravochnik po obogashcheniyu rud. Tom 4: Obogatitel’nye fabriki [Handbook on ores concentration. Concentrating plants (Vol. 4)]. Bogdanov O.S., Nenarokomov Yu.F. eds. Moscow: Nedra, 1984, 360 p. (In Russ.).
8. Karmazin V.I. Magnitnye, elektricheskie i spetsial’nye metody obogashcheniya poleznykh iskopaemykh: Uchebnik dlya vuzov. T. 1: Magnitnye i elektricheskie metody obogashcheniya poleznykh is-kopaemykh [Magnetic, electrical and special methods of mineral processing: Textbook for universities. Vol. 1: Magnetic and electrical methods of mineral processing]. Moscow: Izdatel’stvo Mos-kovskogo gosudarstvennogo gornogo universiteta, 2005, 669 p. (In Russ.).
9. Karmazin V.I. Obogashchenie rud chernykh metallov: Uchebnik dlya vuzov [Concentration of ferrous metals ores]. Moscow: Nedra, 1982, 216 p. (In Russ.).
10. Maryuta A.N., Kachan Yu.G., Bun’ko V.A. Avtomaticheskoe up-ravlenie tekhnologicheskimi protsessami obogatitel’nykh fabrik: Uchebnik dlya vuzov [Automatic control of technological processes in concentrating plants: Textbook for universities]. Moscow: Nedra, 1983, 277 p. (In Russ.).
11. Nesterov G.S. Tekhnologicheskaya optimizatsiya obogatitel’nykh fabric [Technological optimization of concentrating plants]. Mos-cow: Nedra, 1976, 120 p. (In Russ.).
12. Obzor rynka magnitnykh separatorov dlya pererabotki mineral’nogo syr’ya v Rossii [Overview of the market of magnetic separators for mineral processing in Russia]. Available at URL: www.infomine. ru/files/catalog/501/file_501_eng.pdf (Accessed: 08.01.2018). (In Russ.).
13. Shivakumar I. Angadi, A. Mohanthy, Ho-Seok Jeon, S. Prakash, B. Das. Analysis of wet high-intensity magnetic separation of low-grade Indian iron ore using statistical technique. Separation Science and Technology. 2012. vol. 47, Issue 8. pp. 1129–1138.
14. Moon Jung Cho, Wendy L. Martinez. Statistics in MATLAB: A Primer. Chapman and Hall. CRC Computer Science & Data Analysis, 2014, 286 p.
15. Wendy L. Martinez, Angel R. Martinez, Jeffrey L. Solka. Exploratory data analysis with MATLAB. CRC Press. Inc, 2017, 590 p.
16. Bavrin I.I., Matrosov V.L. Vysshaya matematika: Uchebnik dlya vuzov [Higher mathematics: Textbook for universities]. Moscow: Vlados, 2003, 400 p. (In Russ.).
17. Mandra A.G. Analiz svyazannoi sistemy avtomaticheskogo regulirovaniya urovnya vody v bake sistemy khimvodopodgotovki [Analysis of the coupled system of automatic regulation of water level in the tank of the system of chemical and water treatment]. Available at URL: http://matlab.exponenta.ru/simulink/book3/10.php (Accessed: 08.01.2018). (In Russ.).
18. Zhuromskii V.M., Chernokozov V.V. Sintez i modelirovanie pro-myshlennoi sistemy avtomaticheskogo upravleniya: metodicheskie ukazaniya [Synthesis and modeling of industrial automatic control systems: Guidelines]. Moscow: MGTU MAMI, 2009, 41 p. (In Russ.).
19. German-Galkin S. MATLAB & Simulink. Proektirovanie mekhatronnykh sistem na PK: Uchebnoe posobie dlya vuzov [MATLAB & Simulink. Designing mechatronic systems on PC: Manual for universities]. St. Petersburg: Korona-Print. 2017, 368 p. (In Russ.).
20. Pevzner L.D. Teoriya sistem upravleniya [Theory of control systems]. St. Petersburg: Lan’, 2013, 440 p. (In Russ.).
21. Sergienko A.B. Spisok funktsii Signal Processing Toolbox [List of Signal Processing Toolbox function]. Available at URL: http://mat-lab.exponenta.ru/signalprocess/book1 (Accessed: 08.01.2017). (In Russ.).
Review
For citations:
Osipova N.V. THE USE OF KALMAN FILTER IN AUTOMATIC CONTROL OF INDICATORS OF IRON ORES MAGNETIC CONCENTRATION. Izvestiya. Ferrous Metallurgy. 2018;61(5):372-377. (In Russ.) https://doi.org/10.17073/0368-0797-2018-5-372-377