Preview

Известия Высших Учебных Заведений. Черная Металлургия

Расширенный поиск

ПРИОСТАНОВЛЕНИЕ РАСПРОСТРАНЕНИЯ ДЕФОРМАЦИИ В МАГИСТРАЛЬНОМ ТРУБОПРОВОДЕ

https://doi.org/10.17073/0368-0797-2015-1-05-20

Полный текст:

Аннотация

Для  проявления  распространяющегося  пластического разрушения  требуется,  чтобы  трубопроводы  были  спроектированы с учетом недопущения распространения трещин. Подходы, описывающие  поведение  трубопровода,  его  устойчивость  и  гарантированную остановку в случае сбоев в работе, основаны на полуэмпирических моделях, получивших свое развитие в середине 1970-х годов. Эти модели, которые калибровались на сегментах трубопровода в производственном масштабе (в натуральную величину), используются и сейчас, и включают три нелинейные характеристики: пластическую деформацию и винтовую неустойчивость; влияние структуры (состава) почв и увеличение волновой отдачи, а также декомпрессию в нагнетаю щей среде. Рассматривается более чем 40-летняя история расчета распространения деформации в трубопроводе, основанного на трещинах (механическом разрушении). Графические свидетельства полномасштабных сбоев в процессе работы обусловили появление гипотезы о сбоях, возникших в связи и пластическим разрушением.

Об авторе

Брайан Н. Лейс

Соединённые Штаты Америки
д.т.н., консультант


Список литературы

1. Broek D. Elementary Engineering Fracture Mechanics. Noordhoff, 1974: see also Hertzberg R.W. Deformation and Fracture Mechanics of Engineering Materials. John Wiley and Sons, 1976.

2. Irwin G.R. Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate. J of App Mech, ASME, vol. 24, 1957, pp. 361–364.

3. Maxey W.A. Fracture Initiation, Propagation, and Arrest. Paper J. 5th Symposium on Line Pipe Research, PRCI Catalog. no. L30174, November 1974.

4. Starling K.E. Fluid Thermodynamic Properties for Light Petroleum Systems. Texas: Gulf Publishing Co., 1973.

5. Hopke S.W., Lin C.J. Applications of the BWRS Equation to Natural Gas Systems, paper presented at the 75th National AIChE Meeting, Denver, March 1974.

6. Eiber B., Leis B., Carlson L., Horner A., Gilroy-Scott A. Full-Scale Tests Confi rm Pipe Toughness for North American Pipeline. O&GJ, vol. 97, no. 45, November 8, 1999, pp. 48–54.

7. Maxey W.A., Kiefner J.F., Eiber R.J. Ductile Fracture Arrest in Gas Pipelines. AGA NG-18 Report 100, PRCI Catalog. no. L32176, 1975.

8. anon. Running Shear Fractures in Line Pipe, AISI Subcommittee of Large Diameter Line Pipe Producers, AISI Technical Report, 1974.

9. Priest A.H., Holmes B. The Characterization of Crack Arrest Toughness in Gas Transmission Pipelines in Terms of Shear Fracture Propagation Energy (BSC Criterion) Final Report on ECSC

10. Agreement 7210-KE/808, December 1985.

11. Kiefner J.F., Maxey W.A., Eiber R.J., Duffy A.R. Failure Stress Levels of Flaws in Pressurized Cylinders. ASTM Special Technical Publication (STP) 536, American Society for Testing and Materials, 1973, pp. 461–481: see also Maxey W.A., Kiefner J.F., Eiber R.J.,

12. Duffy A.R. Ductile Fracture Initiation, Propagation, and Arrest in Cylindrical Vessels. ASTM STP 514, 1972.

13. Hahn G.T., Sarrate M. and Rosenfi eld A.R. Criteria for Crack Extension in Cylindrical Pressure Vessels. I J Frac Mech, vol. 5, 1969, pp. 187–210.

14. Kawaguchi S., Hagiwara N., Ohata M., Toyoda T. Modifi ed Equation to Predict Leak/Rupture Criteria for Axially Through-wall Notched X80 and X100 Line pipes Having Higher Charpy Energy. Proceedings 5th International Pipeline Conference, ASME, Calgary, 2004, IPC04-0322.

15. L eis B.N. Relationship Between Apparent Charpy Vee-Notch Toughness and the Corresponding Dynamic Crack-Propagation Resistance. Battelle Report to R.J. Eiber, Consultant, Inc., 1997: available as Appendix C; Exhibit B-82, Proceeding GH 3-97, National Energy Board of Canada, 1997–1998.

16. L eis B.N., Zhu K-K. Leak vs. Rupture Boundary for Pipes with a Focus on Low Toughness and/or Ductility. PRCI Final Report on Project EC2-3, April 16, 2012.

17. Maxey W.A. Dynamic Crack Propagation in Line Pipe, Plenary Lecture, International Conference on Analytical and Experimental Fracture Mechanics, Rome, June 1980.

18. P oynton W.A. A Theoretical Analysis of Shear Fracture Propagation in Backfi lled Gas Pipelines, Symposium on Crack Propagation in Pipelines, The Institute of Gas Engineers, Newcastle Upon Tyne, England, March 1974.

19. Eiber R.J., Maxey W.A. Full-Scale Experimental Investigation of Ductile Fracture Behavior in Simulated Arctic Pipeline. Proceedings of the Grey Rocks Symposium, Materials Engineering in the Arctic, ASM, 1977, pp. 306–310.

20. Foothills Pipe Lines (Yukon) Ltd. Final Report on the Test Program at the Northern Alberta Burst Test Facility, Report 18031, Calgary, Canada, 1981.

21. Vogt G.H., etc. EPRG Report on Toughness for Crack Arrest in Gas Pipelines, 3R International, vol. 22, 1983, pp. 98–105.

22. L eis B.N., Eiber R.J., Carlson L., Gilroy-Scott A. Relationship Between Apparent Charpy Vee-Notch Toughness and the Corresponding Dynamic Crack-Propagation Resistance, 1998 Int. Pipeline Conference, Volume II, ASME Calgary, 1998, pp. 723–731.

23. Gray J.M. Ductile Fracture of Gas Pipelines: Correlation between Fracture Velocity and Plastic Zone, NG-18 Report from MicroAlloying International, MA/83/1, July 1983.

24. Kanninen M.F., O’Donoghue P.E., Cardinal J.W., Leung C.P., Morrow T.B., Green S.T., Popelar C.F. Dynamic Fracture Mechanics Analysis and Experimentation for the Arrest of Ductile Fracture Propagation in Gas Transmission Pipelines, in Proc. Pipeline Technology Conf., (R. Denys, Editor), Oostende, Belgium, 1990, Part B, pp. 16.1–13.

25. Venzi S., Martinelli A., Re G., Celant M. Measurement of Fracture Initiation and Propagation Parameters from Fracture Kinematics. Proc. Anal and Exp Fracture Mechanics, Rome, 1980, pp. 737–756.

26. Martinelli A., Venzi S. Tearing Modulus, J-Integral, CTOA, and Crack Profi le Shape obtained from the Load Displacement Curve Only. Engr. Fract. Mech., vol. 53, no. 2, 1996, pp. 263–277.

27. Demofonti G., Buzzichelli G., Venzi S. and Kanninen M.F. “Step by Step Procedure for the Two Specimen CTOA Test”, Proc. 2nd Conf. On Pipeline Technology, vol. II, pp. 503–512, Elsevier, 1995.

28. S WRI-CSM, CTOA for Fracture Arrest in Alliance Pipeline, via private communication between C.W. Peterson and E.L. Von Rosenburg, Consultant to Alliance Pipeline, March 1997.

29. Mannucci G. Written report (CSM Ref. NM90187) via private communication with R.J. Eiber, Consultant to Alliance Pipeline, December, 1999.

30. Hashimi S.H., Howard I.C., Yates J.R., Andrews R.M., Edwards A.M. A Specimen for Studying the Resistance to Ductile Crack Propagation in Pipes, 5th Int. Pipeline Conference, IPC04-0610, Calgary, 2004.

31. Janzen T.S., Horner W.N. The Alliance Pipeline – a Design Shift in Long Distance Gas Transmission. 1998 Int. Pipeline Conf., ASME, pp. 83–88, 1998.

32. Leis B.N. Archives Canadian Nat. Energy Board, GH-3-97, vol. 45, 1997.

33. Gray J.M. An Independent View of Linepipe and Linepipe Steel for High Strength Pipelines: How to Get Pipe that’s Right for the Job at the Right Price, presented at the API X-80 Pipeline Cost Workshop, Hobart, Australia, October 2002.

34. Demofonti G., Mannucci G., Di Biagio M., Hillenbrand H-G., Harris D. Fracture Propagation Resistance of X100 TMCP steel Pipes for High-Pressure Gas Transmission Pipelines using Full-Scale Bursts, 3rd Pipeline Technology Conf., vol. 1, Scientifi c Surveys,

35. , pp. 467–482.


Для цитирования:


Лейс Б.Н. ПРИОСТАНОВЛЕНИЕ РАСПРОСТРАНЕНИЯ ДЕФОРМАЦИИ В МАГИСТРАЛЬНОМ ТРУБОПРОВОДЕ. Известия Высших Учебных Заведений. Черная Металлургия. 2015;58(1):05-20. https://doi.org/10.17073/0368-0797-2015-1-05-20

For citation:


Leis B.N. ARRESTING PROPAGATING SHEAR IN PIPELINES. Izvestiya. Ferrous Metallurgy. 2015;58(1):05-20. (In Russ.) https://doi.org/10.17073/0368-0797-2015-1-05-20

Просмотров: 392


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)