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Аннотация. В связи с постоянным увеличением осевых нагрузок и массы подвижных составов, предназначенных для пассажирского и грузо-

вого тяжеловесного движения, выдвигаются более жесткие требования со стороны потребителей рельсовой продукции. Используемые 
в настоящее время для промышленного производства рельсов углеродистые стали перлитного класса обладают высокими показателями 
потребительских свойств, а именно, стойкостью к износу, образованию контактно-усталостных дефектов, что позволяет обеспечить 
работоспособность в широком диапазоне эксплуатационных и климатических условий на всей протяженности сети железных дорог. 
Важной технической задачей является установление закономерностей формирования микроструктуры рельсов в зависимости от хими-
ческого состава стали и влияния структуры на свойства готовой продукции. Одним из основных параметров, определяющих структуру 
и потребительские свойства железнодорожных рельсов из перлитной стали, является величина межпластинчатого расстояния. Повы-
шение эксплуатационной стойкости рельсов – одна из основных задач специалистов АО «ЕВРАЗ ЗСМК» ‒ металлургического завода 
Кузбасса, входящего в пятерку крупнейших в мире производителей железнодорожных рельсов. В результате проведенных исследований 
представлены результаты сравнительного анализа химического состава, величины межпластинчатого расстояния, а также прочностных 
и пластических свойств металла железнодорожных рельсов перлитного класса. В соответствии с ГОСТ Р 51685 – 2022 сталь марки 
90ХАФ по содержанию углерода является заэвтектоидной. В результате проведенных исследований установлены связи между параме-
трами структуры и физико-механическими свойствами рельсов, а также между содержанием основных химических элементов в стали и 
межпластинчатым расстоянием перлита. 

Ключевые слова: химический состав, механические свойства, твердость, микроструктура рельсов, параметры микроструктуры, межпластин-
чатое расстояние, дифференцированно термоупрочненные рельсы

Для цитирования: Бессонова О.В., Полевой Е.В., Осколкова Т.Н., Комарова Т.А. Сравнительный анализ структуры и свойств железно­
дорожных рельсов заэвтектоидного состава. Известия вузов. Черная металлургия. 2025;68(6):556–562.
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Abstract. Due to the constant increase in axial loads and the weight of rolling stock intended for passenger and freight heavy traffic, more stringent 

requirements are being put forward by consumers of rail products. The pearlite-grade carbon steels currently used for the industrial production 
of rails have high consumer properties, namely, resistance to wear and the formation of contact and fatigue defects, which makes it possible 
to ensure operability in a wide range of operational and climatic conditions along the entire length of the railway network. An important tech-
nical task is to establish the patterns of formation of the microstructure of rails depending on the chemical composition of steel and influence 
of the structure on properties of the finished products. One of the main parameters determining the structure and consumer properties of pearlite 
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 Введение

Со стороны потребителей рельсовой продукции 
выдвигаются требования по увеличению сроков меж-
ремонтной наработки, повышению долговечности 
и надежности рельсов как основного и наиболее нагру-
женного элемента верхнего строения пути. Эксплуа­
тационная стойкость рельсов в значительной степени 
определяется структурно-фазовым состоянием стали, 
в  связи с чем важной технической задачей является 
установление закономерностей формирования микро-
структуры рельсов в зависимости от ее химического 
состава и влияния структуры на свойства готовой про-
дукции. 

По результатам многочисленных исследова-
ний  [1 – 3] выявлены основные закономерности влия­
ния микроструктуры на эксплуатационную стойкость 
рельсов. В настоящее время в мире наиболее рас-
пространены рельсы из высокоуглеродистой стали 
перлитного класса, в которой в результате ускорен-
ного охлаждения формируется структура дисперсной 
пластинчатой феррито-карбидной смеси (перлита), 
обеспечивающей высокие значения твердости, проч-
ностных и пластических свойств, ударной вязкости, 
трещиностойкости, контактно-усталостной прочности 
и  износостойкости  [4 – 6]. Одним из основных пара-
метров, определяющих структуру и потребительские 
свойства железнодорожных рельсов из перлитной 
стали, является величина межпластинчатого расстоя-
ния (МПР) – сумма толщин ферритной и цементитной 
пластинок, которые формируются в рельсах после про-
катки и дифференцированной термообработки  [7 – 9]. 
Однако этот вопрос до сих пор остается недостаточно 
изученным  [10 – 12]. В связи с изложенным оценка 
данного структурного параметра необходима при раз-
работке составов стали, режимов термоупрочнения 
и  температурно-деформационных режимов прокатки, 
обеспечивающих получение требуемых показателей 
качества металлоизделий.

В настоящей работе представлены результаты срав-
нительного анализа химического состава, величины 
межпластинчатого расстояния, а также прочностных 
и  пластических свойств металла железнодорожных 
рельсов типа Р65 производства АО «ЕВРАЗ Объеди­

ненный Западно-Сибирский металлургический комби-
нат» (АО «ЕВРАЗ ЗСМК») [13].

 Материал и методы исследования

В качестве объекта исследования использовали 
железнодорожные дифференцированно термоупроч-
ненные с остаточного тепла предпрокатного нагрева 
рельсы типа Р65, по содержанию углерода сталь марки 
90ХАФ по ГОСТ Р 51685 – 2022 является заэвтектоид-
ной.

С целью исследования качества металла рельсов 
проведены испытания на растяжение (в соответствии 
с ГОСТ 1497 – 2023 на испытательной универсальной 
машине Z-250), испытания на ударный изгиб (в  соот-
ветствии с ГОСТ  9454  –  78 на копре маятниковом 
RKP-450) и измерения твердости на поверхности ката-
ния головки (в соответствии с ГОСТ 9012 – 59 на твер-
домере универсальном NEMESIS 9503).

Исследования и измерения параметров микрострук-
туры проводили на сканирующем электронном микро-
скопе (СЭМ) Tescan MIRA3. Оценку межпластинчатого 
расстояния и диаметра зерна проводили на попереч-
ных шлифах, изготовленных из зоны выкружки после 
электрополировки и травления в 4 %-ном спиртовом 
растворе азотной кислоты. 

Исследуемая зона для измерения МПР находи-
лась на расстоянии 2 – 4 мм от поверхности катания 
головки рельса. Выбор указанного места исследова-
ния обусловлен реализацией в этом участке макси-
мальных контактных напряжений от взаимодействия 
с колесами подвижного состава при эксплуатации. 
В соответствии с методикой работы  [14] измерения 
межпластинчатого расстояния проводили в перлитных 
колониях с явно выраженным параллельным располо-
жением пластинок, независимо от расстояний между 
ними (видимое  МПР), с дальнейшей обработкой 
полученных данных с учетом показателя асимметрии 
и  вычислением среднего значения истинного  МПР. 
Не измеряли расстояния между пластинками с явными 
следами деформации (разрушенные, ломаные и 
существенно изогнутые).

Диаметр зерна в металле рельсов исследуемых 
составов определяли у поверхности выкружки (метод 
выявления  – по сетке феррита или цементита в соот-

steel railway rails is the size of the interlamellar spacing. Improving the operational stability of rails is one of the main tasks of the specia­
lists of JSC EVRAZ ZSMK, the Kuzbass Metallurgical Plant, one of the five largest manufacturers of railway rails in the world. The results 
of a comparative analysis of chemical composition, size of the interlamellar spacing, as well as the strength and plastic properties of the metal 
of pearlite-class railway rails are presented. In accordance with GOST R 51685-2022, 90KhAF steel is hypereutectoid in terms of carbon content. 
As a result of the conducted research, the relationships between parameters of the structure and the physico-mechanical properties of rails, as well 
as between content of the main chemical elements in steel and the interlamellar spacing of perlite, were established. 

Keywords: chemical composition, mechanical properties, hardness, rail microstructure, microstructure parameters, interlamellar spacing, differentially 
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ветствии с ГОСТ 5639 – 82 «Стали и сплавы. Методы 
выявления и определения величины зерна»). 

 Результаты исследований

Химический анализ рельсов исследуемых составов, 
условно маркированных 1 – 5, представлен в табл. 1. 
Нагрев, прокатку и термическую обработку рельсов 
проводили по одинаковым температурно-временным 
технологическим режимам. Для каждого состава были 
отобраны и сгруппированы плавки, отличающиеся по 
содержанию углерода, хрома, ванадия и молибдена. 
Содержание остальных химических элементов не 
имеет существенных различий между плавками, соот-
ветствует требованиям ГОСТ Р 51685 – 2022 и в данном 
анализе не представлено. 

Из приведенных данных следует, что все представ-
ленные составы по содержанию углерода, хрома и вана-
дия удовлетворяют требованиям ГОСТ Р 51685 – 2022. 
Дополнительное микролегирование стали молибденом 
допускается и не регламентируется стандартом. Сравни-
тельный анализ химических составов показал, что наи-
меньшее содержание углерода определено в рельсовом 
металле состава 1, наибольшее – в металле состава 2, 
промежуточные значения по содержанию углерода  – 
в металле составов 3 – 5. При этом содержание ванадия 
находится на сопоставимом уровне, за исключением 
состава 5, значение содержания ванадия в котором на 
0,04 – 0,06 % ниже остальных. Также следует отметить, 
что рельсовый металл составов 4 и 5 отличается повы-
шенным содержанием молибдена в среднем на  0,012 
и  0,004 % соответственно. Наименьшее содержание 
хрома выявлено в металле составов 1 и 2, составы 3 – 5 
отличаются от первых двух несколько повышенными 
значениями по хрому: в среднем на 0,04 – 0,07 %.

Известно  [15; 16], что карбидообразующие эле-
менты значительно изменяют кинетику распада аусте-
нита и, соответственно, вид диаграммы изотерми-
ческого превращения, на которой появляется четкое 
разделение перлитного и бейнитного превращений 
и  промежуточная область повышенной устойчивости 

аустенита. В работах  [17 – 19] установлено, что при 
легировании хромом стали с перлитной структурой 
происходит твердорастворное упрочнение феррита, 
легирование цементита хромом с образованием сое-
динения (Fe, Cr)3C и, возможно, образование карбидов 
хрома. Авторами работы [20] проведен анализ условий 
формирования перлитной структуры при термоупроч-
нении рельсов и установлена связь суммарного содер-
жания углерода и хрома ((C + Cr), %), температуры 
перлитного превращения и межпластинчатого расстоя­
ния перлита в сталях исследуемых составов (табл. 1). 
Определены зависимости изменения прочностных 
и  пластических свойств от содержания углерода 
и  хрома, суммарное значение которых должно быть 
выше 1,2 %, что способствует увеличению дисперс­
ности структуры перлита и обеспечению оптимального 
сочетания прочностных и пластических характеристик. 
В металле исследуемых составов суммарное содер-
жание углерода и хрома находится на сопоставимом 
уровне и превышает значение 1,2 % (за исключением 
состава  1 (1,17 %)), что также подтверждается полу-
чением достаточно высоких значений прочностных 
характеристик при сохранении высокой пластичности 
металла (табл. 2).

Результаты испытаний показали, что по механи-
ческим свойствам при растяжении, ударной вязкости, 
а также твердости на поверхности катания головки 
металл исследуемых составов значительно превышает 
требования стандарта для рельсов заэвтектоидного 
состава, предназначенных для производства рельсов 
категорий ДТ370ИК и ДТ400ИК. Следует отметить, 
что при одновременном увеличении содержания угле-
рода, хрома и  ванадия (сплав  3) наблюдается наилуч-
шее сочетание прочностных и пластических свойств, 
а  также ударной вязкости. При этом значение твердо-
сти, измеренное на поверхности катания головки рельса 
из сплава 3, повышается незначительно относительно 
сплава  1 с  наименьшим содержанием углерода и ука-
занных выше элементов. При увеличении содержания 
молибдена (в три раза) в сплаве 4 наблюдается значи-
тельное увеличение ударной вязкости, а также увеличе-

Таблица 1. Химический состав металла исследуемых рельсов

Table 1. Chemical composition of the studied rails metal

Состав
Содержание элементов, мас. %

(C + Cr), %
С Cr V Mo

1 0,87 0,30 0,08 0,006 1,17
2 0,94 0,27 0,09 0,006 1,22
3 0,91 0,34 0,09 0,006 1,24
4 0,93 0,34 0,10 0,018 1,27
5 0,91 0,34 0,04 0,010 1,25

Требования ГОСТ Р 51685 – 2022 
для стали марки 90ХАФ 0,85 – 0,94 0,20 – 0,60 0,03 – 0,15 – –
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ние прочностных и пластических характеристик отно-
сительно остальных исследуемых сплавов. Следует 
отметить, что при снижении содержаний ванадия и 
молибдена в экспериментальном сплаве 5 значительно 
снижаются значения ударной вязкости и пластических 
характеристик металла при сохранении прочностных 
характеристик и твердости на поверхности катания 
головки готового рельсового проката. 

Исследуемая рельсовая сталь после прокатки и диф-
ференцированной термической обработки имеет пер-
литную структуру преимущественно с пластинами пер-
лита регулярного строения (рис. 1). 

Также встречается значительное количество дефор-
мированных колоний перлита с ломаными и «волнис­
тыми» пластинами, а также участки с переплетением 
перлитных колоний (рис. 2).

Таблица 2. Механические свойства и твердость

Table 2. Mechanical properties and hardness

Состав
Механические свойства при растяжении KCU 

(+20 °C), 
Дж/см2

Твердость 
на поверхности 

катания головки, HBσт , Н/мм2 σв , Н/мм2
  δ, % ψ, %

1 920 1370 10,5 27 26,5 393
2 980 1430 10,5 31 26,0 412
3 1030 1450 10,5 29 25,0 409
4 1028 1480 11,0 24 30,0 424
5 1049 1447 9,0 22 21,5 420

Требования  
ГОСТ Р 51685 – 2022  
для рельсов категории

ДТ370ИК
не менее

370 – 415
870

1280
8,0 14,0 15

ДТ400ИК 1300 400 – 455

Рис. 1. Микроструктура металла исследуемых рельсов составов 1 – 5 (а – д) 

Fig. 1. Microstructure of the studied rails metal of compositions 1 – 5 (а – д)
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В результате количественного анализа оценивали 
такие параметры микроструктуры, как межпластинча-
тое расстояние (дисперсность) и диаметр зерна. 

В табл. 3 представлены результаты проведенных 
измерений параметров микроструктуры, представляю-
щих собой среднеарифметические значения с опреде-
лением стандартного отклонения.

Из представленных данных следует, что средние зна-
чения межпластинчатого расстояния перлита и разме-
ров зерен, измеренные в микроструктуре металла рель-
сов исследуемых составов, находятся на сопоставимом 
уровне, за исключением составов 1 и 2, в которых МПР 
составляет 0,116 и 0,112 мкм соответственно, что ука-

зывает на пониженные значения прочности. В микро-
структуре металла рельсов состава  4 средний размер 
зерен значительно ниже (примерно на 3 – 5 мкм), чем 
в металле рельсов остальных исследуемых составов 
(табл. 3). Повышение содержания ванадия и молибдена 
в металле рельсовой стали состава  4, вероятно, спо­
собствовало повышению ударной вязкости, прочност-
ных и пластических характеристик, что в целом можно 
объяснить способностью торможения роста зерен при 
термической обработке рельсов [21]. 

 Выводы

Проведен сравнительный анализ химического 
состава, прочностных и пластических характеристик, 
а также количественной оценки параметров микро-
структуры железнодорожных рельсов пяти исследуе-
мых составов, произведенных из заэвтектоидной стали 
марки 90ХАФ.

Наилучшее сочетание прочностных и пластических 
характеристик получено в результате испытаний на 
растяжение, ударный изгиб, а также значение твердости 
на поверхности катания головки рельса, произведен-
ного из опытного состава 4 с несколько повышенными 
значениями по содержанию таких микролегирую-

Рис. 2. Микроструктура металла исследуемых рельсов составов 1 – 5 с деформируемыми пластинами (а – д)

Fig. 2. Microstructure of the studied rails metal of compositions 1 – 5 with deformable plates (а – д)

Таблица 3. Параметры микроструктуры

Table 3. Microstructure parameters

Состав МПР, мкм Диаметр зерна, мкм
1 0,116 ± (0,019) 18,36 ± (4,04)

2 0,112 ± (0,020) 19,30 ± (4,80)

3 0,100 ± (0,013) 20,23 ± (2,82)

4 0,110 ± (0,011) 15,14 ± (2,83)

5 0,109 ± (0,011) 20,60 ± (3,90)
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щих элементов, как ванадий и молибден в среднем 
на 0,01 – 0,06 и 0,080 – 0,012 % соответственно. 

В результате количественной оценки параметров 
микроструктуры среднее значение межпластинчатого 
расстояния перлита в исследуемых образцах находится 
на сопоставимом уровне. Структура металла (состав 4) 
рельсов является более мелкозернистой (диаметр зерна 
меньше на 3 – 5 мкм), что в совокупности с наличием 
дисперсной структуры перлита и повлияло на получе-
ние оптимального сочетания прочностных и пласти­
ческих характеристик исследуемых рельсов. 

Следует отметить, что в условиях реальной эксплуа-
тации стойкость к образованию в рельсах дефектов кон-
тактной усталости и стойкость к образованию дефек-
тов могут зависеть от большого количества факторов. 
Понимание механизмов формирования структуры 
и оптимального соотношения структуры и механичес­
ких свойств позволяет разрабатывать рельсы персони-
фицированные для различных участков дороги и тем 
самым повышать эффективность их использования 
и обеспечивать увеличение срока их службы.
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Аннотация. Использование процесса литья по выплавляемым моделям направлено на получение отливок сложной конфигурации с повы-

шенной размерной и геометрической точностью из широкого диапазона литейных сталей и цветных сплавов. Ряд операций при осущест-
влении такого процесса сопровождается появлением дефектов теплофизической природы (усадка модельного материала и его темпера-
турное расширение при выплавлении, приводящее к нарушению целостности керамической формы), что, в известной мере, препятствует 
расширению номенклатуры литья. Формирование экспериментальных пористых выплавляемых моделей прессованием порошков воско-
образных материалов направлено на устранение данных дефектов, но, в силу недостатка сведений о процессах, сопровождающих уплот-
нение воскообразных порошков (в ряде случаев, проявляющихся в упругом отклике материала или изменении прочностных характеристик 
прессовок), требует отдельного изучения. Ранее было установлено, что распределение значений плотности в прессовке, выполненной из 
порошка парафина, обеспечивается направленным нагружением уплотняемого материала, в том числе в поле действия центробежных 
сил, что позволяет получать конфигурацию поверхности тела вращения с прогнозируемым распределением свойств в каждом его участке. 
В настоящей работе, на примере формирования участка тела вращения, приведено сравнение расчетных и экспериментальных зависи-
мостей относительной плотности прессовок (полученных из разных фракций материала ПС 50/50) от напряжений, возникающих при их 
уплотнении в поле действия центробежных сил, а также средних значений плотностей прессовок от скорости вращения форм. Представ-
лены картины напряженно-деформированного состояния прессовок при определении значений их прочности на сжатие, характерные для 
различных воскообразных материалов. Результаты эксперимента направлены на решение задач повышения эффективности процессов 
получения выплавляемых моделей, конфигурация которых представляет собой тело вращения, образованное уплотнением порошковых 
воскообразных материалов в поле действия центробежных сил. 
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 Введение

Актуальность решения вопросов повышения 
эффективности получения точных заготовок из широ-
кого диапазона цветных и черных сплавов литьем по 
выплавляемым моделям обуславливает необходимость 
разработки и модернизации технологических процес-
сов их формирования, направленную на устранение 
операций механической обработки [1] и рост номенк­
латуры изделий авиа-, судо-, и машиностроитель-
ного назначения. Получение отливок сложной про-
странственной конфигурации  [2; 3], отличающихся 
высокой размерной и геометрической точностью, 
а также низкой шероховатостью осуществляется пре-
имущественно литьем по выплавляемым моделям 
(ЛВМ) [4 – 6].

Общая последовательность традиционных опера-
ций в ЛВМ сводится к формированию выплавляемых 
моделей, их сборке в модельные блоки, последователь-
ному нанесению на них и сушке слоев керамической 
оболочки, выплавлению из керамики модельной массы, 
прокалке оболочки в опорном наполнителе, а также 

заливке оболочковой формы расплавом металла с после-
дующей механической обработкой заготовок [7 – 9]. 

В ходе реализации процесса получения отливок 
в ЛВМ отмеченные выше технологические стадии 
сопровождаются теплофизическими явлениями, спо-
собными привести к искажению геометрии выплавляе-
мой модели в виде усадки [10 – 13], деформации и раз-
рушению участков керамических оболочковых форм 
по причинам теплового расширения модельных масс 
как на этапе выплавления, так на этапе прокаливания 
и заливки расплава [14 – 17]. 

Традиционным направлением повышения термо­
стабильности выплавляемых моделей стал подбор ком-
понентов с низким термическим расширением  [18], 
а повышение стойкости керамических форм к трещино-
образованию преимущественно достигается использо-
ванием армирующих элементов или новых связующих 
материалов [19; 20]. 

На решение комплекса проблем теплофизической 
природы направлены вариации получения литья в ЛВМ 
по пористым выплавляемым моделям, формируемым 
прессованием фракций воскообразных материалов. 

  joyful289@inbox.ru
Abstract. The use of investment casting process is aimed at producing castings of complex configuration with increased dimensional and geometric accu-

racy from a wide range of casting steels and non-ferrous alloys. A number of operations during the implementation of such a process are accompanied 
by the appearance of defects of a thermophysical nature (shrinkage of the pattern material and its thermal expansion during melting, leading to a 
violation of the ceramic mold integrity), which, to a certain extent, prevents the expansion of the casting nomenclature. The formation of experimental 
porous investment patterns by compaction of powders of waxy materials is aimed at eliminating such defects, but, due to the lack of information on the 
processes accompanying the compaction of waxy powders (in some cases manifested in the elastic response of the material or a change in the strength 
characteristics of the compacts), requires separate study. It was previously established that the distribution of density values in a paraffin powder 
compact is provided by directional loading of the compacted material, including in the field of centrifugal forces, which allows obtaining the surface 
configuration of a body of revolution with a predictable distribution of properties in each of its sections. In this paper, using the example of forming a 
section of a body of revolution, a comparison is given of the calculated and experimental dependencies of the relative density of compacts (obtained 
from different fractions of the PS50/50 material) on the stresses arising during their compaction in the field of centrifugal forces, as well as the average 
values of the density of compacts on the molds rotation speed. Pictures of the stress-strain state of compacts are presented when determining the values 
of their compressive strength characteristic of various waxy materials. The results of the experiment are aimed at solving the problems of increasing 
the efficiency of processes for obtaining investment patterns, the configuration of which is a body of revolution, formed by compaction of powdered 
waxy materials in the field of centrifugal forces. 
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Такие выплавляемые модели не имеют усадочных 
дефектов и не оказывают расширяющего воздейст-
вия на керамические формы  [21]. В настоящее время 
серией экспериментов получены практические сведе-
ния о напряженно-деформированном состоянии воско­
образных материалов, направленные на устранение 
упругой релаксации прессовок (величина которой более 
чем на порядок меньше размеров усадки и составляет 
около 1 % от объема прессовок), получаемых при их 
уплотнении [22]. 

Расширение возможностей подхода к формирова-
нию пористости в структуре выплавляемых моделей 
видится в реализации новой идеи уплотнения порошков 
воскообразных материалов в поле действия центробеж-
ных сил, что обеспечивает направленность нагружения 
порошкового тела при его уплотнении [23]. Прессовка 
порошков воскообразных материалов позволяет полу-
чать выплавляемую модель, выполненную в виде тел 
вращения, конфигурация внешней поверхности кото-
рой задается вращающейся пресс-формой. Достижение 
равномерного распределения свойств в теле прессовки 
такой конфигурации требует значительного усложнения 
конструкции пресс-формы, а получение выплавляемой 
модели тела вращения запрессовкой пастообразного 
модельного состава может привести к появлению уса-
дочных дефектов при его остывании. Актуальность 
исследований в обозначенном направлении продик-
тована необходимостью поиска энергоэффективного 
варианта формирования прессовок с конфигурацией тел 
вращения в поле действия центробежных сил, обеспечи-
вающего снижение скорости вращения формы при обес-
печении технологически приемлемых значений прочно-
сти прессовок из различных воскообразных материалов.

Таким образом, целью настоящей работы является 
определение силовых параметров процесса прессо-
вания в поле действия центробежных сил фракций 
порошков воскообразного модельного материала 
ПС50/50 и анализ значений прочности таких прессовок 
в сравнении с прессовками, полученными при уплотне-
нии в закрытой пресс-форме, в том числе для получае-
мых из парафина марки Т1.

Для реализации данных задач решались следующие 
вопросы: 

– выбор расчетного метода получения зависимо-
стей напряжений (полученных согласно формулам 
М.Ю. Бальшина и Г.Н. Ждановича), возникающих при 
вертикальном одноосном уплотнении прессовок из 
фракций 2,5 и 0,63 мм материала ПС50/50 от диапазона 
значений относительной плотности 0,8 – 1,0, наиболее 
полно удовлетворяющего экспериментальным дан-
ным, и сравнение адаптированных расчетных данных 
с результатами эксперимента;

– сравнение расчетной и экспериментальной ско-
ростей вращения формы, требующихся для достиже-
ния значений усредненной плотности прессовок (при-
надлежащих диапазону значений 842 – 935 кг/м3, при 

которых возможно достижение их функциональной 
прочности), формирующихся из фракций 2,5 и 0,63 мм 
материала ПС50/50;

– сравнение прочностных характеристик прессовок 
из воскообразных порошковых материалов марок Т1 
и ПС50/50, полученных в результате одноосного верти-
кального уплотнения и в поле действия центробежных 
сил.

 Методики проведения исследования

Для реализации цели и задач настоящей работы 
в качестве воскообразного порошка выбран наибо-
лее востребованный и распространенный в литье по 
выплавляемым моделям материал марки ПС50/50 
технологически приемлемых фракций 0,63 и 2,5 мм, 
обеспечивающих однородность тела прессовки  [24]. 
Фракции получены рассевом на ситах модели 026, 
выполненных согласно требованиям ГОСТ 29234.3–91 
«Пески формовочные. Метод определения среднего 
размера зерна и коэффициента однородности». Мате-
риал ПС50/50 представляет собой сплав равных мас-
совых долей парафина и стеарина и соответствует 
первой классификационной группе модельных мате-
риалов  [25]. В качестве материала-свидетеля в работе 
использован парафин марки Т1 (свойства которого 
регламентированы ГОСТ 23683–89 «Парафины нефтя-
ные твердые. Технические условия»), с прочностными 
характеристиками прессовок из которого сравниваются 
результаты, полученные на материале ПС50/50. Данные 
по значениям средней плотности прессовок, формируе-
мых в поле действия центробежных сил при различных 
скоростях вращения формы, представлены в работе 
авторов настоящего исследования [23]. Значения плот-
ностей материалов ρ, задействованных в эксперименте, 
и соответствующих их литому состоянию, следующие: 
ПС50/50 – ρ = 935 кг/м3, Т1 – ρ = 860 кг/м3.

В ходе серии ранних экспериментов уточнены 
значения допустимого диапазона пористости (П) 
0 % ≤ П ≤ 10 %, при котором сохраняется эксплуата-
ционная прочность воскообразных прессовок, фор-
мируемых в результате одноосного уплотнения мате-
риалов Т1 и ПС50/50 [21]. Значения П определены из 
выражения

		      	 (1)

где ρп  – плотность прессованного образца, кг/м3; ρл  – 
плотность литого материала, кг/м3.

В данном случае удовлетворительные диапазоны 
значений плотностей для материалов Т1 и ПС50/50 
соответственно будут следующими: 774 – 860 кг/м3 
и 842 – 935 кг/м3. 

Перед помещением дозы порошка модельного мате-
риала в форму последнюю обрабатывали керосином 
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для снижения трения уплотняемого материала о ее 
внутреннюю поверхность. Равномерность распределе-
ния порошкового тела в форме перед началом экспери-
мента обеспечивали утряской на вибростенде с часто-
той 3,5 Гц в течение 5 мин.

Процесс уплотнения порошков воскообразных 
материалов в поле действия центробежных сил позво-
ляет получать прессованные выплавляемые модели с 
конфигурацией тел вращения, сложность геометрии 
внешней поверхности которой задается формообра-
зующей поверхностью вращающейся пресс-формы. 
Центробежные силы в данном случае обеспечивают 
одинаковые значения нагрузки в слоях уплотняемого 
материала, расположенных в направлении от центра 
вращения к его периферии. Это в конечном итоге обес-
печивает равномерное распределение свойств в уплот-
ненном теле, а именно одинаковые значения плотности 
в каждой точке, расположенной на одинаковом удале-
нии от центра вращения.

Формирование прессовки, конфигурация которой 
представляет собой тело вращения, предъявляет осо-
бые требования к оборудованию в связи с необходимо-
стью применения высокой скорости вращения формы 
6000 – 15 000 об/мин и, очевидно, представляется энер-
гетически неэффективным [26]. 

Предварительными исследованиями установлена 
целесообразность использования присоединенной 
массы, выполняющей роль пуансона, для формирова-
ния прессовок в виде тел вращения в поле действия 
центробежных сил. Процесс прессования сводится 
к следующим операциям: 

– в установленную на оси центрифуги пресс-форму, 
задающую геометрию прессовки, помещают дозу 
порошка модельного материала и вращают со ско­
ростью, достаточной для образования в центре прес-
совки полости;

– в образовавшуюся полость помещают плоскую 
спиральную пружину, внутри которой размещают при-
соединенную массу, например, в виде стальных шари-
ков и повторно запускают вращение формы, во время 
которого элементы присоединенной массы самопроиз­
вольно распределяются по внутренней поверхности 
стальной пружины.

Опытным путем определено, что для получения 
прессовки из модельного материала ПС50/50 при такой 
схеме уплотнения диапазон скорости вращения состав-
ляет 3500 – 4000 об/мин.

Такое конструктивное исполнение обеспечивает 
необходимое давление, направленное от оси ротора 
центробежной машины к ее периферии при приемлемых 
значениях скорости вращения формы  [23]. В качестве 
присоединенной массы в эксперименте использована 
шайба из стали 45 массой 0,125 кг, радиусом R = 0,023 м 
и высотой l = 0,1 м, как показано на рис. 1. 

Для упрощения расчета параметров процесса 
формирования тела вращения целесообразным пред-

ставляется воспользоваться схемой, представленной 
на рис. 1. На рис. 1, а показана принципиальная схема 
осуществления процесса уплотнения воскообраз-
ного порошкового модельного материала в форме  1, 
выполненной в  виде стакана радиусом R, закреплен-
ной к  ротору центрифуги держателем  2 и пребываю-
щей в состоянии покоя. На рис. 1, б показана стадия 
уплотнения, соответствующая приведению во враще-
ние оси ротора центробежной машины со скоростью 
ω = 3500 – 4000 об/мин, когда ось z держателя и формы 
совпадают. Параметр z изменяется в диапазоне значений 
от z0 до zi и характеризует перемещение поверхности 
порошкового материала по мере его уплотнения. При 
этом Z представляет собой расстояние от оси ротора 
до дна цилиндрической формы (Z = 0,015 м). С целью 
релаксации напряжений в уплотняемом порошковом 
материале и снижения упругого отклика прессовки 
форму вращали со скоростью ω в течение 7 мин.

В процессе центробежного формирования прессовок 
регистрировали скорость вращения ротора центрифуги. 
По завершении стадий уплотнения образцы прессовок 
извлекали из формы и регистрировали их плотность. 
Сформированные образцы подвергали сжимающему 
нагружению до разрушения со скоростью переме-
щения траверсы тестовой машины 22 мм/мин, что 
удовлетворяет требованиям ГОСТ  4651–2014 «Пласт-
массы. Метод испытания на сжатие». Эксперименталь-
ные результаты по разрушению прессовок из мате­

Рис. 1. Схема процесса формирования прессовки из порошкового 
материала в поле действия центробежных сил

Fig. 1. Scheme of forming a compact from powder material 
in the field of centrifugal forces
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риала ПС50/50 сравнивали с данными, полученными 
в результате разрушения прессовок из материала марки 
Т1. Напряжения, возникающие при нагружении экспе-
риментальных образцов, регистрировали при помощи 
тестовой машины AG-X plus Shimadzu. 

По результатам расчетов и серии экспериментов 
строили зависимости:

– сравнения расчетных (по формулам М.Ю. Баль-
шина и Г.Н. Ждановича) с экспериментальными значе-
ниями нагрузки от относительной плотности образцов, 
формируемых из фракций 0,63 и 2,5 мм; 

– сравнения расчетных и экспериментальных зна-
чений средней плотности прессовок, получаемых из 
фракций 0,63 и 2,5 мм от скорости вращения формы;

– напряжения от деформации, сопровождающих 
процесс сопротивления сжимающему нагружению 
образцов из материалов марок ПС50/50 и Т1, получен-
ных при одноосном прессовании и прессовании в поле 
действия центробежных сил.

 Результаты работы и их обсуждение

На рис. 1 схема, схожая с предложенной в  рабо­
те [27], представлена в декартовых координатах x, y, z 
для численного анализа процесса формирования прес-
совки во вращающейся цилиндрической форме, позво-
ляющего прогнозировать распределение свойств внут­
ри прессовки. Согласно схеме ось z совпадает с осью 
цилиндра, а отсчет координат ведется от оси вращения 
ротора центробежной машины y.

Центробежная сила, уплотняющая материал, пред-
ставляется в виде

		             	 (2)

Вектор силы имеет две ненулевые компоненты

		  	 (3)

В результате действия силы  компонента Fz оказы-
вает влияние на перемещение порошка уплотняемого 
материала в направлении донной части цилиндри­
ческой формы, а компонента Fx «заставляет» материал 
расходиться от центра формы к ее стенкам вдоль оси x. 
Влиянием компоненты Fx (ввиду ее незначительности), 
как и силой трения, можно пренебречь, приняв их рав-
ными нулю, что позволит упростить расчеты. Таким 
образом, в данных расчетах центробежная сила зависит 
от координаты z, а процесс прессования можно пред-
ставить как послойное уплотнение порошкового тела, 
состоящего из n слоев, высоты которых обозначим как 

 (где i = 1, ..., n – номер слоя; j – номер итерации про-
цесса расчета). Начало расчета ведем от верхнего слоя 
(z = z0 ) до слоя, примыкающего к донной части формы 
(z = Z). Высоты слоев на начальной итерации j = 0 
равны между собой 

		        	 (4)

Массу m представим через плотность: m = ρV = ρHS, 
где V  – объем прессовки; Н  – высота прессовки, S  – 
площадь поперечного сечения формы. Поделив цент-
робежную силу Fz , создающую давление, на площадь 
поперечного сечения S = πR2, получаем значение напря-
жения, создаваемое i-ым слоем уплотняемого порошко-
вого тела:

	       	 (5)

Поскольку плотность  зависит от напряжения ,  
то расчет производим в два этапа. Сначала находим зна-
чение напряжения на текущей итерации j по известным 
плотностям с предыдущей итерации j = 1. Затем пере-
считываем значения плотности каждого слоя до тех 
пор, пока разница плотностей между итерациями не 
станет пренебрежимо малой. Для расчета нужно знать 
зависимость между плотностью материала и напряже-
нием, требующемся для прессования ρ = ρ(σ). На рис. 2 
представлены результаты серии предварительных экс-
периментов, связанных с определением напряжений, 
возникающих при одноосном вертикальном уплотне-
нии порошков ПС50/50 фракций 2,5 мм (рис. 2, а) и 
0,63 мм (рис. 2, б) до некоторых значений относитель-
ной плотности, лежащих в диапазоне 0,8 – 1,0. При 
этом на рис. 2 кривыми 1 и 2 представлены результаты 
расчета, проведенного по уравнениям, предложенным 
Бальшиным М.Ю. (формула (6)) и Ждановичем  Г.Н. 
(формула (7)) для описания процессов уплотнения 
порошковых тел [28; 29]:

	            	 (6)

	        	 (7)

где σmax – значение напряжения, при котором плотность 
материала ρ достигла значения литой плотности ρmax ; 
θ = ρ/ρmax  – относительная плотность; θ0 = ρ0 /ρmax  – 
относительная насыпная плотность; ρ0  – насыпная 
плотность.

Из рис. 2 видно, что значения напряжений, возни­
кающих при уплотнении порошкового тела, состоящего 
из фракции 0,63 мм, несколько ниже, чем при уплотне-
нии материала фракции 2,5 мм.

Поскольку кривая 2 (полученная согласно формуле, 
предложенной Ждановичем Г.Н.) расположена ближе 
к экспоненте  4, построенной по экспериментальным 
значениям, то для наиболее точного ее приближения 
к  экспериментальной кривой решено аппроксимиро-
вать исходные данные подбором значения показателя 
степени m. Таким образом, показатели m для материала 
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ПС50/50 разных фракций соответственно равны 7,55 
и 8,78. 

Обратная зависимость относительной плотности от 
напряжения, соответствующая формуле (7), имеет вид:

	   	 (8)

Используя выражения (5) и (8), можно получить 
распределение плотностей в уплотняемом порошко-
вом теле по высоте цилиндрической формы при задан-
ной угловой скорости вращения ω. С целью снижения 
угловой скорости вращения ω с 6000 – 15 000 об/мин 
до приемлемых значений, необходимо к поверхности 
уплотняемого материала присоединить дополнитель-
ную массу, присутствие которой позволит повысить 
равномерность распределения плотности в уплотняе-
мом теле, оказывая на него давление.

С этой целью, интегрируя компоненту Fz в фор-
муле  (3) для случая материала с равномерно распре-
деленной по всему объему плотностью, получаем 
напряжение, обеспечиваемое присоединенной массой. 
Поделив σ на площадь формы S, получим значение 
напряжения, появляющегося в результате воздействия 
присоединенной массы на поверхность уплотняемого 
материала z = z0 :

		  	 (9) 

где madd  – масса; l  – высота присоединенной массы, 
выполненной в виде шайбы. По мере прессования гра-
ница соприкосновения поверхности порошкового тела 
с присоединенной массой сдвигается в направлении от 
центра вращения формы к ее периферии z = Z.

Таким образом, по заданным значениям угловой 
скорости с помощью формул (5) и (9) можно опреде-
лять значения напряжений, возникающих в уплотняе-
мом теле, а в соответствии с адаптированной формулой 
Г.Н.  Ждановича найти средние значения плотности 
в прессовке, соответствующие значениям расчетных 
напряжений. 

Для материала ПС50/50 необходимо вычислить 
угловую скорость вращения формы, при которой сред-
няя плотность прессовок будет соответствовать требуе­
мому диапазону значений 842 – 935 кг/м3. На рис. 3. 
представлены графические зависимости средней плот-
ности прессовок, формируемых из материала марки 
ПС50/50 фракции 2,5 мм (рис. 3, а) и фракции 0,63 мм 
(рис. 3, б) от скорости вращения формы. Видно, что 
расчетные кривые  1 лежат несколько ниже экспери-
ментальных экспоненциальных кривых 2, что является 
характерным для обоих случаев. При этом в результате 
эксперимента установлено, что значение плотности 
935 кг/м3, характерное для литого состояния прессовки, 
формируемой из фракции 0,63 мм, достигается при 
угловой скорости вращения формы 4050 об/мин, а для 
уплотнения прессовок из фракции 2,5 мм до литого 
состояния требуемая скорость вращения несколько 
выше и составляет около 4200 об/мин. В целом видно, 
что присоединенная масса позволила в значительной 
мере сократить скорость вращения формы до диапазона 
значений 3500 – 4200 об/мин.

Рис. 3. Зависимости средней плотности прессовок из материала 
ПС50/50 от угловой скорости вращения формы: 

а – фракция 2,5 мм; б – фракция 0,63 мм

Fig. 3. Dependences of the average density of compacts made of 
PS50/50 material on angular velocity of the mold rotation: 

a – fraction 2.5 mm; б – fraction 0.63 mm

Рис. 2. Расчетные и экспериментальные зависимости напряжений, 
возникающих при одноосном вертикальном уплотнении материала 

ПС50/50, от значений относительной плотности прессовок:
а – фракция 2,5 мм; б – фракция 0,63 мм

Fig. 2. Calculated and experimental dependences of stresses arising 
during uniaxial vertical compaction of PS50/50 material on the values  

of relative density of compacts: 
a – fraction 2.5 mm; б – fraction 0.63 mm
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В предположении, что характер распределения 
плотности в объеме прессовок, формируемых пря-
мым вертикальным уплотнением порошкового тела 
и  уплотнением в поле действия центробежных сил, 
будет отличаться, то, по всей видимости, некоторые 
отличия должны будут наблюдаться и в ходе сравне-
ния нагружения прессовок сжатием до их разрушения. 
Очевидно, что свойства самих материалов (а именно Т1 
и ПС50/50) в известной мере будут определять отличия 
в значениях прочности прессовок на сжатие.

На рис. 4 представлены сравнения зависимостей 
напряжений от деформации для цилиндрических прес-
сованных образцов с пористостью П = 0 %, полученных 
прямым прессованием в закрытой пресс-матрице (при 
скорости перемещения пресс-пуансона 0,5 мм/с), с полу-
ченными в поле действия центробежных сил. Черным 
цветом выполнены кривые, характерные для образцов, 
изготовленных прямым прессованием воскообразных 
порошков в закрытой цилиндрической пресс-форме, 
красным  – для образцов, полученных прессованием в 
поле действия центробежных сил. Сплошные линии 
характерны для образцов, полученных из фракции 2,5 мм; 
пунктирные – из фракции 0,63 мм соответственно. 

Визуальный анализ зависимостей «напряжение  – 
деформация» для образцов, полученных из мате­
риала марки Т1 (рис. 4, а) и материала марки ПС50/50 
(рис. 4, б), позволяет установить существенные разли-
чия в характере сопротивления прессовок сжимающей 
нагрузке. На графических полях рис. 4 дополнительно 
представлена картина разрушения прессованных 

цилиндрических образцов, из которой ясно, что мате-
риал марки Т1 (характеризующийся температурой 
плавления 60 °С  [21]) деформируется по «хрупкому 
сценарию», в то время как материал марки ПС50/50 
(имеющий температуру плавления 52 °С) более плас­
тичен. В целом сопротивление сжимающей нагрузке 
прессовок, сформированных из порошков мате­
риала Т1, несколько выше, чем у прессовок, получен-
ных из ПС50/50, что, по всей видимости, также можно 
объяснить большей пластичностью последнего. Стоит 
отметить, что общим признаком, характеризующим 
все варианты получения экспериментальных прессо-
вок, является доминирование пиковых значений сжи-
мающих напряжений при испытании на прочность 
образцов, полученных из фракции 2,5 мм, над значени-
ями прочности образцов из меньшей фракции: в сред-
нем на 7 % для варианта одностороннего одноосного 
уплотнения и на 12 % для варианта уплотнения в поле 
действия центробежных сил.

Анализом зависимостей, представленных на рис. 4, 
также установлено, что прочность на сжатие образцов, 
сформированных в поле действия центробежных сил, 
уступает значениям прочности прессовок, получен-
ных в  результате одностороннего уплотнения в сред-
нем на  15  %, что, однако, является достаточным для 
реализации задачи их дальнейшего технологического 
использования.

 Выводы

В результате серии расчетных и эксперименталь-
ных исследований определены силовые параметры 
процесса уплотнения прессования в поле действия 
центробежных сил порошковых тел из фракций воско-
образного модельного материала ПС50/50 и проведен 
сравнительный анализ значений прочности цилиндри-
ческих прессованных образцов в сравнении с образ-
цами, полученными при уплотнении парафина марки 
Т1 в закрытой пресс-форме.

Установлена предпочтительность расчетного 
метода, предложенного Г.Н.  Ждановичем, адаптиро-
ванного для получения зависимостей напряжений, воз-
никающих при вертикальном одноосном уплотнении 
прессовок из порошков материала ПС50/50, от техноло-
гически приемлемого диапазона значений относитель-
ной плотности 0,8 – 1,0.

В результате эксперимента установлено, что зна-
чения плотности, характерные для прессовок с пори-
стостью 0 % ≤ П ≤ 10 %, формируемой из фракций 
ПС50/50 при условии использования присоединенной 
массы, достигаются в диапазоне значений угловой 
скорости вращения формы 3500 – 4200 об/мин. Значе-
ния точек, расположенных на расчетных зависимостях 
средней плотности прессовок из материала ПС50/50 
от угловой скорости вращения формы, отстают от экс-
периментальных в среднем на 5 %, что может быть 

Рис. 4. Зависимость напряжения от деформации 
при вертикальном одноосном сжимающем нагружении образцов, 

выполненных из материалов марок: 
а – Т1; б – ПС50/50

Fig. 4. Dependence of stress on deformation under 
vertical uniaxial compressive loading of the samples made 

of materials of the following grades: 
a – T1; б – PS50/50
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обусловлено пренебрежением в расчетах силой трения 
уплотняемого материала о стенки формы.

Анализом экспериментальных данных установлено, 
что прочность на сжатие образцов, сформированных 
в  поле действия центробежных сил, уступает значе-
ниям прочности прессовок, полученных в результате 
одностороннего уплотнения в среднем на  15 %, что, 
в целом, является достаточным для реализации задачи 
их дальнейшего технологического использования.

 Список литературы / References

1.	 Yuan G., Li Y., Hu L., Fu W. Preparation of shaped aluminum 
foam parts by investment casting. Journal of Materials Pro­
cessing Technology. 2023;314:117897.

	 https://doi.org/10.1016/j.jmatprotec.2023.117897
2.	 Kapranos P., Carney C., Pola A., Jolly M. Advanced cast-

ing methodologies: Investment casting, centrifugal casting, 
squeeze casting, metal spinning, and batch casting. Refe­
rence Module in Materials Science and Materials Engineer­
ing. Comprehensive Materials Processing. 2014;5:39–67. 
https://doi.org/10.1016/B978-0-08-096532-1.00539-2

3.	 Singh S., Prakash C., Ramakrishna S. Three-dimensional 
printing assisted investment casting processes for intricate 
products. Encyclopedia of Materials: Plastics and Polymers. 
2022;1:611–618.

	 https://doi.org/10.1016/B978-0-12-820352-1.00021-3
4.	 Huang P.H., Shih L.K.L., Lin H.M., Chu C.I., Chou C.S. 

Novel approach to investment casting of heat-resistant steel 
turbine blades for aircraft engines. The International Jour­
nal of Advanced Manufacturing Technology. 2019;104: 
2911–2923. https://doi.org/10.1007/s00170-019-04178-z

5.	 Юсипов Р.Ф., Демьянов Е.Д., Виноградов В.Ю., Парем-
ский И.Я., Айрапетян А.С. Точность отливок при литье 
по выплавляемым моделям. Литейное производство. 
2021;(9):18–19.

	 Yusipov R.F., Demyanov E.D., Vinogradov V.Yu., Paremsky I.
Ya., Ayrapetyan A.S. Castings size accuracy at investment 
casting. Liteinoe proizvodstvo. 2021;(9):18–19. (In Russ.).

6.	 Yarlagadda P.K.D.V., Hock T.S. Statistical analysis on accu-
racy of wax patterns used in investment casting process. 
Journal of Materials Processing Technology. 2003;138(1–3): 
75–81. https://doi.org/10.1016/S0924-0136(03)00052-9

7.	 Pattnaik S., Karunakar D.B., Jha P.K. Developments in 
investment casting process – A review. Journal of Materials 
Processing Technology. 2012;212(11): 2332–2348.

	 https://doi.org/10.1016/j.jmatprotec.2012.06.00
8.	 Arruebarrena G., Hurtado I., Väinölä J., Cingi C., Dévényi S., 

Townsend J., Mahmood S., Wendt A., Weiss K., Ben-Dov A. 
Development of investment-casting process of Mg-alloys for 
aerospace applications. Advanced Engineering Materials. 
2007;9(9):751–756.

	 https://doi.org/10.1002/adem.200700154
9.	 Одиноков В.И., Евстигнеев А.И., Дмитриев Э.А., Черны-

шова Д.В., Евстигнеева А.А. Влияние опорного наполни-
теля и структуры оболочковой формы на ее трещиностой-
кость. Известия вузов. Черная металлургия. 2022;65(4): 
285–293. https://doi.org/10.17073/0368-0797-2022-4-285-293

	 Odinokov V.I., Evstigneev A.I., Dmitriev E.A., Cherny­
shova D.V., Evstigneeva A.A. Influence of support filler and 

structure of shell mold on its crack resistance. Izvestiya. Fer­
rous Metallurgy. 2022;65(4):285–293. (In Russ.).

	 https://doi.org/10.17073/0368-0797-2022-4-285-293
10.	 Thakre P., Chauhan A.S., Satyanarayana A., Kumar E.R., 

Pradyumna R. Estimation of shrinkage & distortion in wax 
injection using Moldex3D simulation. Materials Today: Pro­
ceedings. 2018;5(9(3)):19410–19417.

	 https://doi.org/10.1016/j.matpr.2018.06.301
11.	 Sabau A.S. Alloy shrinkage factors for the investment casting 

process. Metallurgical and Materials Transactions B. 2006; 
37:131–140. https://doi.org/10.1007/s11663-006-0092-x

12.	 Dong Y.W., Li X.L., Zhao Q., Yang J., Dao M. Modeling of 
shrinkage during investment casting of thin-walled hollow 
turbine blades. Journal of Materials Processing Technology. 
2017;244:190–203.

	 https://doi.org/10.1016/j.jmatprotec.2017.01.005
13.	 Sata A., Ravi B. Bayesian inference-based investment-cast-

ing defect analysis system for industrial application. Inter­
national Journal of Advanced Manufacturing Technology. 
2017;90(9–12):3301–3315.

	 https://doi.org/10.1007/s00170-016-9614-0
14.	 Заславская О.М., Дубровин В.К., Савин Ф.М., Низов-

цев  Н.В. Влияние модельного состава на трещиноо-
бразование форм в литье по выплавляемым моделям. 
Технологии металлургии, машиностроения и материа­
лообработки. 2020;(19):164–170.

	 Zaslavskaya O.M., Dubrovin V.K., Savin F.M., Nizovtsev N.V. 
Influence of the model composition on crack formation in 
investment casting. Tekhnologii metallurgii, mashinostroeniya 
i materialoobrabotki. 2020;(19):164–170. (In Russ.).

15.	 Jin S., Liu C., Lai X., Li F., He B. Bayesian network approach 
for ceramic shell deformation fault diagnosis in the invest-
ment casting process. International Journal of Advanced 
Manufacturing Technology. 2017;88:663–674.

	 https://doi.org/10.1007/s00170-016-8795-x
16.	 Behera M.M., Pattnaik S., Sutar M.K. Thermo-mechanical 

analysis of investment casting ceramic shell: A case study. 
Measurement. 2019;147:106805.

	 https://doi.org/10.1016/j.measurement.2019.07.033
17.	 Odinokov V.I., Dmitriev E.A., Evstigneev A.I., Sviridov A.V., 

Ivankova E.P. Modelling selection of structure and properties of 
monolayer electrophoretic shell molds during investment cast-
ing. Materials Today: Proceedings. 2021;38(4):1672–1676. 
https://doi.org/10.1016/j.matpr.2020.08.200

18.	 Mukhtarkhanov M., Akayev S., Gouda S., Shehab E., Haz-
rat Ali Md. A novel method for evaluating thermal expansion 
forces during dewaxing of investment casting and 3D-print-
ing waxes. International Journal of Lightweight Materials 
and Manufacture. 2024. Available online 17.04.2024.

	 https://doi.org/10.1016/j.ijlmm.2024.05.004
19.	 Venkat Y., Choudary K.R., Das D.K., Pandey A.K., Singh S. 

Ceramic shell moulds for investment casting of low-pressure 
turbine rotor blisk. Ceramics International. 2021;47(4): 
5663–5670. https://doi.org/10.1016/j.ceramint.2020.10.152

20.	 Kanyo J.E., Schafföner S., Uwanyuze R.S., Leary K.S. An 
overview of ceramic molds for investment casting of nickel 
superalloys. Journal of the European Ceramic Society. 
2020;40(15):4955–4973.

	 https://doi.org/10.1016/j.jeurceramsoc.2020.07.013
21.	 Богданова Н.А., Жилин С.Г. Влияние режимов уплотне-

ния воскообразных порошков на напряженно-деформи-

https://doi.org/10.1016/j.jmatprotec.2023.117897
https://doi.org/10.1016/B978-0-08-096532-1.00539-2
https://doi.org/10.1016/B978-0-12-820352-1.00021-3
https://doi.org/10.1007/s00170-019-04178-z
https://doi.org/10.1016/S0924-0136(03)00052-9
https://doi.org/10.1016/j.jmatprotec.2012.06.003
https://doi.org/10.17073/0368-0797-2022-4-285-293
https://doi.org/10.17073/0368-0797-2022-4-285-293
https://doi.org/10.1016/j.measurement.2019.07.033
https://doi.org/10.1016/j.ceramint.2020.10.152
https://doi.org/10.1016/j.jeurceramsoc.2020.07.013


Izvestiya. Ferrous Metallurgy. 2025;68(6):563–571.
Bogdanova N.A., Zhilin S.G., Predein V.V. Strength characteristics of investment patterns obtained by compaction of waxy material powders ...

571

рованное состояние прессовок, применяемых в точном 
литье. Известия вузов. Черная металлургия. 2024;67(5): 
593–603. https://doi.org/10.17073/0368-0797-2024-5-593-603

	 Bogdanova  N.A., Zhilin  S.G. Influence of compression 
modes of waxy powders on stress-strain state of compacts 
used in precision casting. Izvestiya. Ferrous Metallurgy. 
2024;67(5):593–603.

	 https://doi.org/10.17073/0368-0797-2024-5-593-603
22.	 Adamov A.A., Keller I.E., Zhilin S.G., Bogdanova N.A. 

Identification of the cap model of elastoplasticity of non-
compact media under compressive mean stress. Mechanics 
of Solids. 2024;59(4):1868–1880.

	 https://doi.org/10.1134/S002565442460291X
23.	 Zhilin S.G., Bogdanova N.A., Firsov S.V., Komarov O.N. 

Prospects of obtaining removable models by pressing wax-
like materials under the influence of centrifugal forces. 
Metallurgist. 2023;67:814–825.

	 https://doi.org/10.1007/s11015-023-01567-4
24.	 Жилин С.Г., Богданова Н.А., Комаров О.Н. Исследо-

вание процессов формирования пористых выплавляе-
мых моделей, применяемых для изготовления высоко-
точного литья. Известия вузов. Цветная металлургия. 
2023;29(3):54–66.

	 https://doi.org/10.17073/0021-3438-2023-3-54-66

	 Zhilin S.G., Bogdanova N.A., Komarov O.N. Porous wax 
patterns for high-precision investment casting. Izvestiya. 
Non-Ferrous Metallurgy. 2023;29(3):54–66.

	 https://doi.org/10.17073/0021-3438-2023-3-54-66
25.	 Гаранин В.Ф., Иванов В.Н., Казеннов С.А. и др. Литье 

по выплавляемым моделям / Под общей редакцией В.А. 
Озерова. 4-е издание, переработанное и дополненное. 
Москва: Машиностроение; 1994:448.

26.	 Патент 2768654 RU. Способ получения выплавляемой 
модели тела вращения. Предеин В.В., Жилин С.Г., Богда-
нова Н.А., Комаров О.Н.; заявлено 24.11.2021; опублико-
вано 24.03.2022. Бюллетень № 9.

27.	 Анциферов В.Н., Перельман Г.В. Напряженно-деформи-
рованное состояние формуемых в центрифуге порошко-
вых материалов. Конструкции из композиционных мате­
риалов. 2012;(4):10–16.

	 Antsiferov V.N., Perel’man G.V. Deflected mode of powder 
materials formed in centrifuge. Konstruktsii iz kompozitsion­
nykh materialov. 2012;(4):10–16. (In Russ.).

28.	 Бальшин М.Ю. Порошковая металлургия. Москва: Маш-
гиз;1948:286.

29.	 Жданович Г.М. Теория прессования металлических 
порошков. Москва: Металлургия;1969:262.

Нина Анатольевна Богданова, младший научный сотрудник 
лаборатории проблем создания и обработки материалов и изделий, 
Институт машиноведения и металлургии Хабаровского Федераль-
ного исследовательского центра Дальневосточного отделения РАН
ORCID: 0000-0002-8769-8194
E-mail:  joyful289@inbox.ru

Сергей Геннадьевич Жилин, к.т.н., доцент, ведущий научный 
сотрудник лаборатории проблем создания и обработки материа-
лов и изделий, Институт машиноведения и металлургии Хабаров-
ского Федерального исследовательского центра Дальневосточ-
ного отделения РАН
ORCID: 0000-0002-0865-7109
E-mail:  zhilin@imim.ru

Валерий Викторович Предеин, к.т.н., научный сотрудник лабо-
ратории проблем создания и обработки материалов и изделий, 
Институт машиноведения и металлургии Хабаровского Феде-
рального исследовательского центра Дальневосточного отделе-
ния РАН
ORCID: 0000-0002-5808-2104
E-mail:  predein3@mail.ru

Nina A. Bogdanova, Junior Researcher of the Laboratory of Problems of 
Creation and Processing of Materials and Products, Institute of Machi
nery and Metallurgy of the Khabarovsk Federal Research Center of the 
Far-Eastern Branch of the Russian Academy of Sciences
ORCID: 0000-0002-8769-8194
E-mail:  joyful289@inbox.ru 

Sergei G. Zhilin, Cand. Sci. (Eng.), Assist. Prof., Leading Researcher of 
the Laboratory of Problems of Creation and Processing of Materials and 
Products, Institute of Machinery and Metallurgy of the Khabarovsk 
Federal Research Center of the Far-Eastern Branch of the Russian 
Academy of Sciences
ORCID: 0000-0002-0865-7109
E-mail:  zhilin@imim.ru 

Valerii V. Predein, Cand. Sci. (Eng.), Research Associate of the Labora-
tory of Problems of Creation and Processing of Materials and Products, 
Institute of Machinery and Metallurgy of the Khabarovsk Federal 
Research Center of the Far-Eastern Branch of the Russian Academy of 
Sciences
ORCID: 0000-0002-5808-2104
E-mail:  predein3@mail.ru

Сведения об авторах Information about the Authors

Поступила в редакцию 11.07.2025
После доработки 01.08.2025

Принята к публикации 15.10.2025

Received 11.07.2025
Revised 01.08.2025

Accepted 15.10.2025

Н. А. Богданова – проведение экспериментов, обработка экспери-
ментальных данных, обсуждение результатов, написание статьи.
С. Г. Жилин – определение цели работы, участие в обработке экс-
периментальных данных и обсуждении результатов, написание 
статьи.
В. В. Предеин – постановка экспериментов, постановка расчетной 
части.

N. A. Bogdanova – conducting experiments, processing of experimen-
tal data, discussion of results, writing the text.
S. G. Zhilin – setting the goal of the work, processing of experimental 
data, discussion of results, writing the text.

V. V. Predein – setting up experiments, setting up the calculation part.

Вклад авторов Contribution of the Authors

https://doi.org/10.17073/0368-0797-2024-5-593-603
https://doi.org/10.17073/0368-0797-2024-5-593-603
https://doi.org/10.17073/0021-3438-2023-3-54-66
https://doi.org/10.17073/0021-3438-2023-3-54-66
https://orcid.org/0000-0002-8769-8194
mailto:joyful289@inbox.ru
https://orcid.org/0000-0002-0865-7109
mailto:zhilin@imim.ru
https://orcid.org/0000-0002-5808-2104
mailto:predein3@mail.ru
https://orcid.org/0000-0002-8769-8194
mailto:joyful289@inbox.ru
https://orcid.org/0000-0002-0865-7109
mailto:zhilin@imim.ru
https://orcid.org/0000-0002-5808-2104
mailto:predein3@mail.ru


Известия вузов. Черная металлургия. 2025;68(6):572–580.
Попова Н.А., Громов В.Е. и др. Упрочнение поверхностных слоев головки длинномерных рельсов при длительной эксплуатации

572

УДК 669.539.382:669.17:625.1
DOI 10.17073/0368-0797-2025-6-572-580

  gromov@physics.sibsiu.ru
Аннотация. Начиная с 2018 года на АО «ЕВРАЗ Объединенный Западно-Сибирский металлургический комбинат» производятся рельсы 

категории ДТ400ИК повышенной износостойкости и циклической трещиностойкости для тяжеловесного движения и сложных участков 
пути с крутыми кривыми радиусом менее 650 м. Методом просвечивающей дифракционной электронной микроскопии изучены струк-
турно-фазовые состояния и дефектная субструктура на разных расстояниях (0, 2, 10 мм) от поверхности контакта «колесо – рельс» 
вдоль центральной оси симметрии головки рельса («поверхность катания») и по радиусу скругления головки рельса («выкружка») 
дифференцированно закаленных длинномерных рельсов категории ДТ400ИК из заэвтектоидной стали после длительной эксплуатации 
на экспериментальном кольце РЖД (пропущенный тоннаж 187 млн т). На основании полученных параметров структуры выполнены 
количественные оценки дислокационной субструктуры и основных механизмов упрочнения (упрочнение перлитной составляющей, 
некогерентными частицами цементита, границами зерен и субграницами, дислокационной субструктурой и внутренними полями напря-
жений), в различных морфологических составляющих и в целом по материалу, формирующих аддитивный предел текучести в иссле-
дуемой стали. Проведено сравнение количественных параметров тонкой структуры и вкладов в упрочнение на «поверхности катания» 
и «выкружке». Вблизи контакта «колесо – рельс» на поверхности катания превалирующей морфологической составляющей является 
субзеренная структура, в выкружке – феррито-карбидная смесь (полностью разрушенный перлит). Прочность металла головки рельсов 
зависит от расстояния до поверхности контакта «колесо – рельс». Основным механизмом упрочнения на поверхности катания является 
упрочнение полями внутренних напряжений, в выкружке – упрочнение некогерентными частицами. 

Ключевые слова: рельсы, выкружка, поверхность катания, электронная микроскопия, заэвтектоидная сталь, фазовый состав, параметры тон-
кой структуры, механизмы упрочнения
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Abstract. Starting in 2018, JSC EVRAZ United West Siberian Metallurgical Plant (EVRAZ ZSMK) produced rails of the DT400IK category with 

increased wear resistance and cyclic crack resistance for heavy traffic and difficult sections of track with steep curves with a radius of less than 650 m. 
The method of transmission diffraction electron microscopy was used to study the structural and phase states and defect substructure at different 

Hardening of surface layers of long rail head 
during long-term operation
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 Введение

Согласно данным РЖД основными причинами 
выхода рельсов из строя и их изъятия являются кон-
тактно-усталостные повреждения и поверхност-
ный износ. Эти дефекты существенно снижают срок 
службы рельсов и влияют на безопасность движе-
ния  [1]. В  последнее время наблюдается явно выра-
женный рост нагрузок на ось и повышение скоростей 
железнодорожного транспорта, что делает актуальной 
проблему создания рельсов с высокими эксплуата-
ционными свойствами  [2 – 5]. В процессе эксплуа-
тации в  поверхностных слоях рельсов наблюдаются 
значительные структурно-фазовые изменения  [5 – 7], 
отмечаются высокие значения микротвердости, обез-
углероживание  [8 – 10], протекают релаксационные, 
рекристаллизационные и т. п. процессы, сопровождаю-
щиеся ухудшением механических свойств [11 – 13]. 

Повышение содержания углерода более 0,8 мас. % 
в рельсах приводит к снижению межпластинчатого 
расстояния, обеспечивает в поверхностных слоях суб-
зеренную структуру с высоким содержанием мало­
угловых границ [14 – 17], что позволяет рассматривать 
такой подход как одно из перспективных направлений 
борьбы с контактной усталостью [18 – 21]. 

С 2018 г. в России на АО «ЕВРАЗ Объединенный 
Западно-Сибирский металлургический комбинат» 
(АО «ЕВРАЗ ЗСМК») производятся длинномерные диф-
ференцированно закаленные рельсы специального назна­
чения повышенных износостойкости и контактной вынос­
ливости категории ДТ400ИК из заэвтектоидной стали 
для эксплуатации со скоростями движения до 200 км/ч 
на прямых и кривых участках железнодорожного пути 
без ограничений грузонапряженности [22 – 24]. 

В научной литературе практически отсутствуют 
публикации, в которых рассматриваются рельсы из 
заэвтектоидной стали, авторы фиксируют лишь качест-
венные изменения [25 – 30]. Известно, что для рельсов 
с содержанием углерода менее 0,8 мас. % при длитель-

ной эксплуатации эволюция содержания различных 
морфологических типов структуры, параметров тонкой 
структуры и содержания цементита происходят более 
интенсивно на поверхности выкружки, чем по поверх-
ности катания [31; 32]. 

Целью настоящей работы является сравнительная 
оценка количественных параметров тонкой структуры 
и  механизмов деформационного упрочнения поверх-
ностных слоев головки рельсов («поверхности ката-
ния» и «выкружки») из заэвтектоидной стали после 
длительной эксплуатации (пропущенный тоннаж  – 
187 млн т брутто).

 Материал и методы исследования

Изучение внутренней структуры и фазового состава 
проведено на образцах дифференцированно закаленных 
рельсов категории ДТ400ИК из стали марки Э90ХАФ 
производства АО «ЕВРАЗ ЗСМК» после пропущен-
ного тоннажа 187 млн т брутто на экспериментальном 
кольце РЖД (г.  Щербинка). Химический состав рель-
совой стали Э90ХАФ, согласно ГОСТ  5185 – 2013 и 
ТУ 24.10.75111-298-057576.2017, мас. %: 0,92 С; 0,4 Si; 
1,0 Mn; 0,3 Cr; 0,14 V: основа – Fe.

Для исследования из рельсов были вырезаны две 
партии образцов A и B (рис. 1). Первая партия образ-
цов А сгруппирована вдоль центральной оси симмет­
рии головки рельса («поверхность катания») (рис. 1). 
Вторая партия образцов B вырезана по радиусу скруг­
ления головки рельса («выкружка») (рис. 1). Образцы 
этих двух партий методом электроискровой резки были 
получены на одинаковых расстояниях от поверхности 
контакта «колесо – рельс», а именно, 0 (верхний слой 
контактной поверхности), 2 и 10 мм от поверхности. 
Исследования выполнены методом просвечивающей 
дифракционной электронной микроскопии (ПЭМ) на 
тонких фольгах с применением электронного микро-
скопа JEM-2100 (Jeol, Япония) при рабочих увеличе-
ниях в колонне микроскопа от 15 000 до 500 000 крат.

distances (0, 2, 10 mm) from the “wheel – rail” contact surface along the central axis of symmetry of the rail head (tread surface) and along 
the radius of rounding of the rail head (fillet) of differentially hardened long rails of the DT400IK category made of hypereutectoid steel after long-
term operation on the experimental ring of Russian Railways (passed tonnage of 187 million tons). Based on the obtained structure parameters, 
the quantitative estimates were made of the dislocation substructure and main strengthening mechanisms (strengthening of the pearlite component, 
incoherent cementite particles, grain boundaries and subboundaries, dislocation substructure and internal stress fields) in various morphological 
components and in the material as a whole, forming the additive yield strength in the studied steel. A comparison of the quantitative parameters 
of the fine structure and contributions to strengthening on the tread surface and fillet was carried out. It was established that near the “wheel – rail” 
contact on the tread surface the prevailing morphological component is the subgrain structure, in the fillet – a ferrite-carbide mixture (completely 
destroyed pearlite). Strength of the rail head metal depends on the distance to the “wheel – rail” contact surface. It is shown that the main streng­
thening mechanisms on the tread surface are strengthening by internal stress fields, in the fillet – strengthening by incoherent particles. 

Keywords: rails, fillet, tread surface, electron microscopy, hypereutectoid steel, phase composition, fine structure parameters, strengthening mechanisms

Acknowledgements: The work was performed within the framework of the state assignment of the Ministry of Science and Higher Education of the 
Russian Federation (topic No. FEMN-2023-0003). The authors express their gratitude to E.V. Polevoi for the samples provided, and I.Yu. Litovchenko 
for assistance in conducting TEM studies.

For citation: Popova N.A., Gromov V.E., Yur’ev A.B., Nikonenko E.L., Porfir’ev M.A. Hardening of surface layers of long rail heads during long-
term operation. Izvestiya. Ferrous Metallurgy. 2025;68(6):572–580. https://doi.org/10.17073/0368-0797-2025-6-572-580

https://fermet.misis.ru/index.php/jour/search/?subject=rails
https://fermet.misis.ru/index.php/jour/search/?subject=fillet
https://fermet.misis.ru/index.php/jour/search/?subject=tread surface
https://fermet.misis.ru/index.php/jour/search/?subject=electron microscopy
https://fermet.misis.ru/index.php/jour/search/?subject=hypereutectoid steel
https://fermet.misis.ru/index.php/jour/search/?subject=phase composition
https://fermet.misis.ru/index.php/jour/search/?subject=fine structure parameters
https://fermet.misis.ru/index.php/jour/search/?subject=strengthening mechanisms
https://doi.org/10.17073/0368-0797-2025-6-572-580


Известия вузов. Черная металлургия. 2025;68(6):572–580.
Попова Н.А., Громов В.Е. и др. Упрочнение поверхностных слоев головки длинномерных рельсов при длительной эксплуатации

574

Для каждого образца была проведена классифика-
ция морфологических признаков структуры, опреде-
лен фазовый состав и рассчитаны параметры тонкой 
структуры (объемные доли морфологических состав-
ляющих); установлены места локализации карбид-
ной фазы (цементита) и в каждом конкретном месте 
определена форма частиц и рассчитаны их размеры, 
расстояния между частицами и их объемная доля; 
скалярная ρ и  избыточная ρ± плотность дислокаций 
и  амплитуды внутренних напряжений (σл  – напряже-
ния сдвига или «леса» дислокаций, создаваемые дисло-
кационной структурой; σд  – дальнодействующие (или 
локальные) напряжения, возникающие в тех местах 
материала, где присутствует избыточная плотность 
дислокаций). Все количественные параметры тонкой 
структуры определены в каждой морфологической 
составляющей и в целом по материалу и статистически 
обработаны. Методика определения количественных 
параметров подробно изложена в работах  [33; 34]. 
На  основании полученных параметров, согласно дан-
ным работ  [33; 35; 36], для каждой партии образцов 
выполнена оценка основных механизмов упрочнения, 
формирующих предел текучести в исследуемой стали.

 Результаты и их обсуждение

Ранее проведенные исследования  [33; 34; 36] пока-
зали, что на расстоянии 10 мм от поверхности кон-
такта «колесо – рельс» по центральной оси симметрии 
(«поверхность катания») структура стали после дли-
тельной эксплуатации представлена различным по мор-
фологии перлитом (пластинчатым идеальным, состоя-
щим из практически параллельных пластин α-фазы 
и цементита; частично разрушенным, или дефектным, 
в котором пластины цементита изогнуты, частично 

разрушены; глобулярным), суммарная объемная доля 
которого составила 80 %, а также фрагментирован-
ным пластинчатым перлитом (20 %), в котором наблю-
дается образование дислокационных стенок поперек 
направления пластин α-фазы (средний размер фрагмен-
тов – 90×420 нм). Изображения этих морфологических 
составляющих представлены в работах [33; 34; 36]. 

По мере приближения к поверхности контакта 
«колесо – рельс» происходит разрушение перлита, совер-
шенствование фрагментированной структуры, размер 
фрагментов уменьшается, формируется и  быстро раз-
вивается субзеренная структура (рис. 2, а), состоящая 
практически из бездислокационных субзерен, средний 
размер которых на поверхности контакта составляет 
80 нм, а объемная доля – 90 %.

Одновременно эксплуатация приводит к разруше-
нию и перераспределению частиц цементита, к неко-
торому увеличению, а когда начинает интенсивно раз-

Рис. 1. Схема подготовки фольг при исследовании методом 
электронной дифракционной микроскопии на расстояниях 

0, 2 и 10 мм от поверхности по центральной оси (А) 
и радиусу скругления выкружки (В)

Fig. 1. Scheme of foil preparation during examination 
by electron diffraction microscopy at distances of 0, 2, 10 mm 

from the surface along the central axis (A) and the radius 
of rounding of the fillet (B)

Рис. 2. ПЭМ-изображения субзеренной структуры (а) 
и микротрещины в субзеренной структуре (б) на «поверхности 
катания» и феррито-карбидной смеси (в) в «выкружке» в стали 

Э90ХАФ после длительной эксплуатации (поверхность контакта 
«колесо – рельс»)

Fig. 2. TEM images of the subgrain structure (a) and microcracks 
in the subgrain structure (б) on the tread surface and ferrite-carbide 
mixture (в) in the fillet in E90KhAF steel after long-term operation 

(wheel – rail contact surface)
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виваться бездислокационная субзеренная структура, 
уменьшению скалярной и избыточной плотности дис-
локаций. Фрагментация пластинчатого перлита и раз-
витие субзеренной структуры привели к упругому иска-
жению кристаллической решетки α-фазы. В результате 
амплитуда внутренних локальных (дальнодействую-
щих) напряжений σд , возникающих там, где присутст-
вует избыточная плотность дислокаций, оказывается 
в  4,5 раза больше внутренних напряжений сдвига σл , 

определяемых дислокационной структурой, и при этом 
упругая составляющая внутренних дальнодействую-
щих напряжений на поверхности контакта оказывается 
больше пластической более чем на порядок. Именно 
это и является причиной появления микротрещин 
в субзеренной структуре (рис. 2, б). Изменения средних 
количественных параметров тонкой структуры по мере 
приближения к поверхности контакта «колесо – рельс» 
приведены на рис. 3, а – г.

Рис. 3. Зависимости количественных параметров тонкой структуры от расстояния до поверхности контакта «колесо – рельс» 
на «поверхности катания» (a – г) и «выкружке» (д – з): 

a, д – объемные доли морфологических составляющих PV (1 – перлит разной морфологии; 2 – фрагментированный пластинчатый перлит; 
3 – субзеренная структура; 4 – феррито-карбидная смесь); б, е – скалярная ρ и избыточная ρ± плотность дислокаций; 

в, ж – амплитуды внутренних напряжений (сдвига σf и дальнодействующих σis ); 
г, з – составляющие дальнодействующих напряжений (упругой  и пластической  )

Fig. 3. Dependences of quantitative parameters of fine structure on the distance to wheel – rail contact surface 
on the tread surface (a – г) and fillet (д – з):

a, д – volume fractions of morphological components PV (1 – pearlite of different morphology; 2 – fragmented lamellar pearlite; 
3 – subgrain structure; 4 – ferrite-carbide mixture); б, е – scalar ρ and excess ρ± dislocation density; 

в, ж – amplitudes of internal stresses (shear σf and long-range σis ); г, з – components of long-range stresses (elastic  and plastic  )
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В отличие от центральной оси симметрии («поверх-
ности катания») в структуре стали по радиусу скругле-
ния головки рельса («выкружке») на такой же глубине 
от поверхности контакта (10 мм) наряду с различным 
по морфологии перлитом и фрагментированным плас­
тинчатым перлитом, объемные доли которых прак­
тически такие же, как и на «поверхности катания» 
(78 и  20 % соответственно), в небольшом количестве 
(~2 %) присутствует еще одна морфологическая состав-
ляющая, а именно, феррито-карбидная смесь – участки 
структуры с полностью разрушенными колониями пер-
лита (рис. 2, в), в которых по данным дифракционного 
анализа [33] присутствуют мелкие частицы цементита 
игольчатой формы, средний размер которых состав-
ляет 10×25 нм, а также наблюдается высокая скалярная 
плотность дислокаций. По мере приближения к поверх-
ности контакта «колесо – рельс», как и на «поверхно-
сти катания», происходят интенсивное разрушение 
перлита, совершенствование фрагментированной 
структуры, размер фрагментов уменьшается, а  фер-
рито-карбидная смесь занимает все больший объем 
материала. На  поверхности контакта объемная доля 
феррито-карбидной смеси составляет 60 %, и при этом 
перлит (пластинчатый идеальный, разрушенный и гло-
булярный) в структуре продолжает присутствовать, 
в  небольшом количестве (~2 %) появляется субзерен-
ная структура. Изменения объемных долей морфологи-
ческих составляющих в структуре «выкружки» по мере 
приближения к поверхности контакта представлены на 
рис. 3, д.

Дислокационная структура во всех морфологи­
ческих составляющих, как и на «поверхности катания», 
представлена либо хаотически расположенными дис-
локациями, либо дислокационными сетками. Скаляр-
ная плотность дислокаций ρ во всех морфологических 
составляющих по мере приближения к поверхности 
контакта «колесо – рельс» увеличивается. Установ-
лено, что наибольшей величиной ρ обладает феррито-
карбидная смесь (полностью разрушенная структура), 
наименьшей  – субзеренная структура. Но так как на 
поверхности контакта объемная доля феррито-карбид-
ной смеси составляет 60 % объема материала, а субзе-
ренной структуры – лишь 2 %, то средняя по материалу 
величина скалярной плотности дислокаций полностью 
определяется величиной ρ в феррито-карбидной смеси 
и поэтому, в отличие от «поверхности катания», сред-
няя по материалу ρ по мере приближения к поверх­
ности контакта увеличивается (рис. 3, е). Увеличи­
вается и кривизна-кручение кристаллической решетки 
α-фазы и, соответственно, избыточная плотность дис-
локаций (причем даже с большей скоростью) и быстро 
приближается к величине ρ (рис. 3, е). Это объясняется 
тем, что в феррито-карбидной смеси, фрагментирован-
ном пластинчатом перлите и субзеренной структуре 
появляется упругая составляющая в изгибе-кручении 
кристаллической решетки, и амплитуда дальнодейст­

вующих напряжений σis начинает превышать напряже-
ние сдвига σf  (рис. 3, з), причем упругая составляющая 
σis превышает пластическую как на «поверхности ката-
ния».

По полученным количественным параметрам тон-
кой структуры был выполнен анализ и проведено 
сравнение основных механизмов упрочнения заэвтек-
тоидной рельсовой стали на различных расстояниях 
от поверхности после длительной эксплуатации вдоль 
центральной оси симметрии головки рельса («поверх-
ности катания») и по радиусу скругления головки 
рельса («выкружке»): вклады, обусловленные упроч-
нением за счет перлита Δσперл (барьерное торможение 
в перлитных колониях); некогерентными частицами 
цементита Δσор (упрочнение материала некогерент-
ными частицами при обходе их дислокациями по меха-
низму Орована); границами зерен и субграницами Δσсс 
(субструктурное упрочнение  – упрочнение, обуслов-
ленное внутрифазными границами); дислокационной 
субструктурой Δσл (упрочнение дислокациями «леса», 
которые перерезают скользящие дислокации, т. е. внут­
реннее напряжение сдвига) и внутренними полями 
напряжений Δσд (упрочнение дальнодействующими 
полями напряжений). Количественная оценка этих 
вкладов упрочнения осуществлялась по формулам, 
приведенным в работах [33 – 36]. Полученные резуль-
таты представлены на рис. 4.

Выполненный анализ показал, что независимо от 
направления исследований прочность металла рель-
сов зависит от расстояния до поверхности контакта 
«колесо – рельс» (рис. 3). А именно, по мере прибли-
жения к поверхности контакта все основные прочност-
ные характеристики материала рельса увеличиваются, 
причем наибольшему упрочнению подвергается припо-
верхностный слой толщиной не более 2 мм. При боль-
шем удалении от поверхности прочностные свойства 
стали остаются практически на уровне прочностных 
свойств стали в исходном состоянии. Основными меха-
низмами упрочнения металла вдоль «поверхности 
катания» являются упрочнение внутренними дально-
действующими (локальными) напряжениями (причем 
в основном упругого характера), субструктурное упроч-
нение и упрочнение некогерентными частицами. Это 
связано с тем, что на поверхности контакта субзеренная 
структура занимает практически весь объем материала 
(90 %). Субзерна обладают нанометровым диапазоном 
(80 нм). Это приводит к высокой плотности субграниц 
и стыков (в большей степени тройных), являющихся 
источниками изгибных экстинкционных контуров 
(в  основном упругих), что, в свою очередь, приводит 
к высоким значениям внутренних дальнодействующих 
напряжений, упругая составляющая которых более чем 
на порядок выше пластической.

На контактной поверхности «выкружки» основным 
механизмом упрочнения является упрочнение некоге-
рентными частицами, а также механизмы, обусловлен-
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ные внутренними дальнодействующими (локальными) 
напряжениями, внутренними напряжениями сдвига 
(«леса» дислокаций). Это объясняется тем, что основ-
ными морфологическими составляющими, формирую-
щими упрочнение, являются феррито-карбидная смесь 
с низкой плотностью границ, занимающая 60 % объема 
материала, и фрагментированный пластинчатый пер-
лит, объемная доля которого составляет 20 %. Возник-
шая на поверхности контакта субзеренная структура, 
формирующая большое число стыков зерен, приво-
дит к  росту источников экстинкционных контуров и, 
соответственно, росту Δσд . Но поскольку объемная 
доля субзеренной структуры мала (2 %), то ее вклад 
в упрочнение поверхности контакта «колесо – рельс» 
выкружки небольшой.

 Выводы

Выполнен количественный анализ тонкой струк-
туры и механизмов упрочнения заэвтектоидной рель-
совой стали в различных морфологических составляю-
щих и в целом по материалу на различных расстояниях 

от поверхности контакта «колесо – рельс» вдоль цент-
ральной оси симметрии головки рельса («поверхность 
катания») и по радиусу скругления головки рельса 
(«выкружка») после пропущенного тоннажа 187 млн т 
брутто. 

Установлено принципиальное отличие микрострук-
туры металла в зависимости от расположения гради-
ентной структуры слоев стали в рельсе на «поверх­
ности катания» или «выкружке»: вблизи контакта 
«колесо – рельс» на «поверхности катания» превали­
рующей морфологической составляющей является суб-
зеренная структура, в «выкружке»  – феррито-карбид-
ная смесь. В результате эти данные позволили выявить 
разные механизмы упрочнения: на «поверхности ката-
ния»  – упрочнение полями внутренних напряжений, 
в  «выкружке»  – упрочнение некогерентными части-
цами.

Независимо от направления исследований проч-
ность металла рельсов зависит от расстояния до 
поверхности контакта «колесо – рельс». Наибольшему 
упрочнению подвергается приповерхностный слой 
толщиной не более 2 мм. При большем удалении от 

Рис. 4. Вклады основных механизмов упрочнения ∆σi в предел текучести стали Э90ХАФ на различных расстояниях 
от поверхности контакта «колесо – рельс» на «поверхности катания» (а) и «выкружке» (в) и вклады пластической ∆σпл и упругой ∆σупр 

составляющих внутренних дальнодействующих напряжений ∆σд на «поверхности катания» (б) и «выкружке» (г)

Fig. 4. Contributions of the main strengthening mechanisms ∆σi to yield strength of E90KhAF steel at different distances from the wheel – rail 
contact surface on the tread surface (a) and fillet (в) and contributions of the plastic ∆σпл and elastic ∆σупр components of the internal  

long-range stresses ∆σд on the tread surface (б) and fillet (г)
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поверхности прочностные свойства стали остаются 
практически на уровне прочностных свойств стали 
в исходном состоянии. 
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Аннотация. Работа посвящена исследованию возможности получения карбидостали на основе порошковой быстрорежущей стали 10Р6М5 

с добавками карбидов вольфрама (WC) и титана (TiC) методом индукционной наплавки. Подобранные составы наплавляемой шихты 
и предложенный состав флюса на основе плавленой буры с добавками борной кислоты и ряда оксидов удовлетворяют технологии. Разра-
ботанная технология включает в себя флюс, способ брикетирования шихты с помощью поршневого устройства, минимизирующего 
перемещение ферромагнитных компонентов шихты под влиянием электромагнитного поля индуктора в процессе наплавки. Получены 
и исследованы наплавленные слои карбидостали на основе быстрорежущей стали с упрочнением карбидами вольфрама и титана. Иссле-
дование полученных слоев проводилось методами оптической и электронной микроскопии (с применением микроанализатора), рентге-
нофазовым методом контролировался фазовый состав наплавленных слоев, твердость слоев измерялась методом Роквелла. Добавление 
карбида вольфрама в порошковую быстрорежущую сталь приводит при наплавке к формированию ледебуритной структуры, характерной 
для высоковольфрамистых быстрорежущих сталей. Повышение количества карбида вольфрама в составе карбидостали приводит только 
к частичному его расплавлению в жидкой стали, что способствует сохранению в микроструктуре частиц внесенных карбидов. Карбид 
титана, добавленный в состав карбидостали, существенно меняет морфологию ледебуритных выделений. По данным рентгенофазового 
анализа в составе карбидосталей наблюдается ряд карбидов типа Me12C, Мe6С, Мe2С и МeС, свойственных карбидосталям, полученным 
различными методами (плазменной наплавкой, спеканием, пропиткой карбидного каркаса и др.). Показано, что твердость образцов 
карбидосталей с добавками карбидов вольфрама и титана варьируется от 59 до 63 HRC, в зависимости от состава и технологических 
режимов наплавки. 

Ключевые слова: карбидосталь, индукционная наплавка, структура, быстрорежущая сталь, карбид вольфрама, карбид титана

Для цитирования: Климов С.А., Носков Ф.М., Токмин А.М., Масанский О.А. Получение карбидосталей на основе быстрорежущей стали 
методом индукционной наплавки. Известия вузов. Черная металлургия. 2025;68(6):581–586.

	 https://doi.org/10.17073/0368-0797-2025-6-581-586

  fnoskov@sfu-kras.ru
Abstract. The work is devoted to the study of the possibility of obtaining carbide steel based on powdered high-speed steel 10R6M5 with additives 

of tungsten (WC) and titanium (TiC) carbides by induction surfacing. The selected compositions of the deposited charge and the proposed composition 
of the flux based on fused borax with additives of boric acid and a number of oxides satisfy the technology. The developed technology includes a flux, 
a method of briquetting charge using a piston device that minimizes the movement of ferromagnetic components of the charge under the influence 
of inductor electromagnetic field during surfacing. Deposited layers of carbide steel based on high-speed steel reinforced with tungsten and titanium 
carbides were produced and studied. The obtained layers were analyzed using optical and electron microscopy (using a microanalyzer), phase compo-
sition of the deposited layers was controlled by the X-ray phase method, and hardness of the layers was measured by the Rockwell method. Addition 
of tungsten carbide to powdered high-speed steel leads to the formation of ledeburite structure during surfacing, which is characteristic of high-tung-
sten high-speed steels. An increase in the amount of tungsten carbide in the carbide steel leads only to its partial melting in liquid steel, which helps 
to preserve the particles of introduced carbides in the microstructure. Titanium carbide added to the carbide steel composition significantly changes 
the morphology of ledeburite precipitates. According to X-ray phase analysis data, a number of carbides of Me12C, Me6C, Me2C and MeC types were 
observed in the composition of carbide steels, which are characteristic of carbide steels obtained by various methods (plasma surfacing, sintering, 
impregnation of a carbide frame, etc.). It is shown that hardness of the samples of carbide steels with additives of tungsten and titanium carbides varies 
from 59 to 63 HRC, depending on the composition and technological modes of surfacing. 
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 Введение

В настоящее время все острее встает вопрос раз-
работки новых как конструкционных, так и инстру-
ментальных материалов с повышенными физико-
механическими и эксплуатационными свойствами. 
Актуальность этой задачи обусловлена исчерпанием 
возможности для совершенствования свойств извест-
ных материалов: износостойких  [1 – 3] и инструмен-
тальных сталей (в том числе быстрорежущих), твердых 
сплавов и т. д. [4 – 6]. 

Карбидостали, состоящие из тугоплавких карбидов 
(чаще всего карбидов вольфрама и титана) и сталей, 
можно отнести к новому классу материалов с боль-
шими перспективами применения. По своим качествам 
карбидостали занимают промежуточное положение 
между твердыми сплавами и сталями и сочетают свой-
ства обоих компонентов: и карбидного упрочнителя, 
и стальной матрицы [7 – 9]. 

Чаще всего карбидостали получают с использо-
ванием технологий порошковой металлургии: спе-
канием прессовок исходных материалов, пропиткой 
сталью карбидного каркаса, горячим прессованием 
порошков или горячей экструзией  [7]. Эти процессы 
состоят из большого количества достаточно сложных 
технологических операций, что сужает возможности 
широкого практического получения и использования 
карбидосталей. Существуют и иные технологичес­
кие решения, например, получение карбидосталей 
методами плазменной [10 – 13] или лазерной [14; 15] 
наплавки, однако при применении этих технологий 
(кроме высокой стоимости лазерной установки) суще-
ствуют опасность распыления компонентов плазмен-
ной струей, расход дорогостоящего газа и т. п. Главным 
фактором, сдерживающим широкое распространение 
карбидосталей, является технология их получения 
традиционными способами, которая требует сложного 
оборудования и длительного технологического цикла 
производства.

В настоящее время существует технология индукци-
онной наплавки металлических слоев [16 – 20], которая 
базируется на использовании нагрева токами высокой 
частоты. В результате многофакторного воздействия 
электромагнитного поля на металлическую подложку, 
флюс и исходную шихту синтезируется многослойный 
композит, у которого на поверхности может быть сфор-
мирован слой, обладающий комплексом улучшенных 
свойств: износостойкостью, кислотоупорностью, жаро-
стойкостью и т. д. Методика нанесения слоев характе-
ризуется относительной дешевизной оборудования, 
простотой осуществления и скоротечностью процесса 

наплавки, частично совмещающейся, при необходи­
мости, с термической обработкой наплавленного слоя.

Целью настоящей работы являлось исследование 
возможности получения карбидостали методом индук-
ционной наплавки.

Задачи работы:
– подобрать благоприятные для индукционной 

наплавки составы наплавляемой шихты на основе быс-
трорежущей стали с добавками карбидов вольфрама и 
титана;

– предложить состав флюса для индукционной 
наплавки карбидостали;

– получить наплавленные слои карбидостали на 
основе быстрорежущей стали с упрочнением карби-
дами вольфрама и титана на стальных подложках;

– исследовать микроструктуру и свойства получен-
ных образцов.

 Материал и методы исследования

В качестве основного компонента шихты для полу-
чения наплавленных слоев выступала порошковая 
быстрорежущая сталь 10Р6М5. Для получения кар-
бидостали порошковую сталь замешивали на орга-
ническом связующем с порошками карбидов воль-
фрама (WC) и титана (TiC) в различных соотношениях 
(5 – 20 мас. % от массы стали). Последняя величина 
понижена относительно традиционной технологии 
получения карбидостали, где количество упрочняющей 
фазы варьируется от 20 до 70 мас. % [7]. Это обуслов-
лено технологическими особенностями индукционной 
наплавки, так как время, необходимое для формирова-
ния слоя, в данном случае существенно меньше, чем 
при традиционных технологиях, а, следовательно, 
и возможное время взаимодействия матрицы и упроч-
нителя так же сокращается. Поэтому для обеспечения 
эффективного взаимодействия компонентов карбидо-
стали и для формирования удовлетворительной и без-
дефектной структуры повышенные количества упроч-
няющего компонента не вводились.

Важную роль при индукционной наплавке играет 
флюс, защищающий наплавляемый металл и поверх-
ность стальной подложки от окисления кислородом 
воздуха  [9]. В качестве флюса использовалась смесь 
порошковой плавленой буры, борной кислоты и доба-
вок оксидов кремния, магния, кальция и натрия. 

При подборе флюса учитывался фактор влияния маг-
нитного поля, возникающего в зоне наплавки, на шихту. 
Одной из проблем получения карбидостали на основе 
быстрорежущей является ферромагнетизм порошковой 
стали, которая на начальном этапе нагрева (до перехода 
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в парамагнитное состояние) активно взаимодействует 
с магнитным полем, создаваемым индукционной уста-
новкой в зоне наплавки. Для предотвращения переме-
щения порошковой шихты ее прессовали в брикеты. 
Кроме того, существенную роль играет флюс, высту-
пая в определенном температурном диапазоне своеоб­
разным «связующим» между частицами шихты в тот 
момент, когда флюс уже расплавился, а нагретая метал-
лическая часть шихты еще нет. 

Для прессовки брикетов наиболее эффективно пока-
зала себя поршневая система. Смешанные компоненты 
шихты укладывались в контейнер, предварительно 
смоченный пластификатором на основе органического 
соединения, который снижает фактор прилипания ком-
понентов к стенкам контейнера и поршню. С помощью 
поршня происходило уплотнение образца. В процессе 
прессования могли выделяться излишки связующего 
и пластификатора. После уплотнения брикет просуши-
вался в течение минимум 2 ч при температуре 80 °С.

В качестве подложек для наплавки служили плас­
тины углеродистой конструкционной стали 45.

Наплавка пластин (рис. 1) осуществлялась при 
помощи высокочастотной индукционной установки 
типа УВГ 2-25, с генератором ГНОМ-25М1 мощно-
стью до 20 кВт и рабочей частотой генератора от 44 
до  66 кГц. Использовался витковый индуктор с фер-
ритным водоохлаждаемым сердечником. Для фиксации 
брикетов на первом этапе наплавки и предотвращения 
повреждения индуктора на наплавляемые брикеты 
укладывалась асбестовая прокладка (рис. 1).

Исследования микроструктуры образцов осу-
ществляли на оптическом микроскопе Carl Zeiss Axio 
Observer.D1 и электронном микроскопе Hitachi TM4000 
с микроанализатором. Фазовый состав сплава опреде-
ляли рентгеноструктурным методом на дифрактометре 
«Bruker» с использованием излучения меди. Твердость 
наплавленных слоев измеряли методом Роквелла.

 Результаты исследований и их обсуждение

Исследование микроструктуры полученных наплав-
ленных слоев показало, что в целом структура соот-
ветствует характерным особенностям структуры литой 
быстрорежущей стали. Во всех образцах обнаружена 
ледебуритная эвтектика с различной морфологией, 
зависящей от состава и количества внесенных в шихту 
карбидов. Присутствует твердый раствор на основе 
аустенита, состав которого может варьироваться 
в широких пределах в зависимости от состава наплав-
ляемого образца.

В случае наплавки быстрорежущей порошко-
вой стали 10Р6М5 без добавок (рис. 2, а) наблюда-
ется характерная для этой стали ячеистая структура, 
с небольшими по размеру включениями ледебуритной 
эвтектики с веерообразной морфологией. Внесение 
небольшого количества карбидов вольфрама приво-
дит к их практически полному растворению в расплаве 
и  кристаллизующаяся структура в целом походит 
на структуру быстрорежущей стали без наплавок 
(рис. 2, б), но с повышенным количеством ледебурит-
ной эвтектики с веерообразной морфологией.

Дальнейшее повышение количества внесенных 
карбидов приводит к выделению из жидкости ледебу-
ритной эвтектики с так называемой скелетной морфо-
логией, характерной для высоковольфрамовой быст-
рорежущей стали типа Р18 (рис. 2, в). Это объясняется 
растворением внесенных карбидов в жидкой стали при 
наплавке. Но существует предел растворимости, кото-
рый вызван не столько ограничениями, связанными 
с диаграммой состояния, сколько, по-видимому, недос­
татком времени из-за кратковременности процесса. 
В  результате может быть зафиксирована структура, 
где наравне со скелетной эвтектикой наблюдаются и 
группы нерастворенных внесенных карбидов воль-
фрама характерной угловатой формы (рис. 2, г).

По данным рентгенофазового исследования в струк-
туре наблюдаются аустенит, мартенсит, цементит 
и ледебурит с карбидами типов Fe6W6C, Fe3W3C. Кроме 
этого рентгенофазовое исследование показало наличие 
карбидных включений типов W2С и WС, последний 
из них  – это частично не растворившиеся в твердом 
растворе частицы внесенной в шихту карбидной фазы 
в образцах с относительно высоким содержанием вне-
сенных карбидов.

Исследование твердости показало, что наплавлен-
ные образцы стали 10Р6М5 без упрочнителя характе-
ризуются твердостью порядка 60 – 61 HRC, а образцы 
с  добавками карбида вольфрама имеют твердость 
61 – 63 HRC.

Получение карбидостали на основе быстрорежу-
щей стали с упрочнителем в виде карбида титана (TiC) 
представляет большую сложность. Это вызвано харак-
тером смачиваемости сталью карбида титана, взаим-
ным растворением связки и упрочнителя и др. [7]. Тем 

Рис. 1. Схема индукционной наплавки: 
1 – ферритный сердечник; 2 – витковый индуктор; 

3 – асбестовая прокладка; 4 – наплавляемый брикет; 
5 – металлическая подложка в форме пластины

Fig. 1. Scheme of induction surfacing: 
1 – ferrite core; 2 – coil inductor; 3 – asbestos gasket; 

4 – deposited briquette; 5 – metal substrate in the form of a plate
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не менее, удалось получить слои карбидостали указан-
ного состава, микроструктура которых представлена 
на рис. 3. Структура полученного слоя меняется в зави-
симости от состава карбидостали.

Так, при низком содержании карбида титана 
(рис. 3, а) в микроструктуре наблюдается ячеистая 
структура аустенита с сеткой карбидов. В аустените 
отчетливо виден мартенсит. Ледебурита скелетного 
типа не наблюдается. При повышении содержания кар-
бида титана качество наплавки снижается, усиливается 

тенденция к порообразованию, а в микроструктуре 
наблюдаются включения ледебурита (рис. 3, б). Мор-
фология ледебурита своеобразная – условная «арабская 
вязь». Указанные особенности, очевидно, вызваны спо-
собностью жидкой стали растворять в себе определен-
ное количество внесенных карбидов и характером кри-
сталлизации из жидкого состояния.

По данным рентгенофазового исследования в струк-
туре наблюдаются аустенит, мартенсит, цементит 
и ледебурит с карбидами типов Fe6W6C, Fe3W3C. Кроме 

Рис. 3. Структура карбидостали: сталь 10Р6М5 – TiC: 
а – 10 мас. % TiC (оптический микроскоп); б – 20 мас. % TiC (электронный микроскоп)

Fig. 3. Structure of carbide steel 10R6M5 – TiC: 
a – 10 wt. % TiC (optical microscope); б – 20 wt. % TiC (electron microscope)

Рис. 2. Микроструктура наплавленных слоев: 
а – быстрорежущая сталь 10Р6М5 без добавок; б – г – карбидосталь с 5, 10 и 20 мас. % WC

Fig. 2. Microstructure of deposited layers: 
a – high-speed steel 10R6M5 without additives; б – г – carbide steel with 5, 10, 20 wt. % WC
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этого, наравне с карбидом титана TiC присутствуют 
карбидные включения типа W2С.

Твердость образцов с добавками карбида титана 
варьируется от 59 до 63 HRC. 

 Выводы

Подобраны удовлетворяющие индукционной 
наплавке составы наплавляемой шихты на основе быс-
трорежущей стали 10Р6М5 с добавками до 20 мас. % 
карбидов вольфрама (WC) и титана (TiC). Разрабо-
тан состав флюса для наплавки карбидостали, вклю-
чающий буру и борную кислоту в качестве основы с 
добавками оксидов кремния, магния, кальция и натрия. 
Разработана технология и получены наплавленные 
слои карбидостали на основе быстрорежущей стали с 
упрочнением карбидами вольфрама и титана на сталь-
ных подложках из стали 45. Микроструктура получен-
ных образцов характеризуется наличием аустенита, 
мартенсита, цементита и ряда специальных карбидов 
типа Me6C, Мe2С, МeС и др. Твердость карбидостали в 
наплавленном слое варьируется от 59 до 63 HRC в зави-
симости от состава исходной шихты.

Таким образом, показана возможность получения 
карбидостали на основе порошковой быстрорежущей 
стали 10Р6М5 с добавками карбидов вольфрама (WC) 
и титана (TiC) методом индукционной наплавки.
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Аннотация. Авторы изучили триботехническое поведение стали Ст3 в условиях сухого скользящего электрического контакта с плотно-

стью тока более 100 А/см2 при разных коэффициентах трансформации питающего трансформатора. Снижение коэффициента трансфор-
мации приводит к снижению износостойкости и электропроводности контакта. Методами металлографии было обнаружено образование 
слоев переноса на контактных поверхностях. Толщины слоев переноса не превышают 20 мкм. Морфологические картины изношенных 
контактных поверхностей в масштабе номинальной (геометрической) площади контакта состоят из двух секторов, где один сектор имеет 
признаки расплава. Рентгеновский фазовый анализ показал, что слои переноса содержат более 70 об. % FeO. Именно поэтому слои пере-
носа можно представить как квази-диэлектрическую среду, где FeO выступает как диэлектрик. Авторы делают предположение, что в зоне 
контакта возникают сильные импульсы самоиндукции, которые вызывают токи смещения высокой плотности. Эти токи воздействуют 
непосредственно на ионы FeO и переводят их в расплав. Данные представления позволяют утверждать, что расплав состоит из атомов 
или ионов железа и кислорода. Снижение коэффициента трансформации (то есть увеличение индуктивности вторичной обмотки питаю-
щего трансформатора) вызывает усиление импульсов самоиндукции и токов смещения, что приводит к увеличению количества расплава 
FeO, его легкому удалению из зоны контакта и к соответствующему уменьшению износостойкости и электропроводности контакта. 
Полученные данные могут служить ориентирами при выборе износостойких материалов для сильноточного скользящего контакта и, 
в частности, при задании его конструкции. 

Ключевые слова: скользящий электрический контакт, электрическая проводимость контакта, интенсивность изнашивания, адгезия, окисление 
зоны трения, коэффициент трения, расплав на поверхности скольжения, ток смещения
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 Введение

Одной из основных задач трибологии является обес-
печение удовлетворительной износостойкости пары 
трения в тяжелых условиях эксплуатации, достичь 
которой можно за счет обоснованного применения 
конструкции узла трения, задания необходимой окру-
жающей среды или за счет выбора соответствующих 
материалов пары трения. Сухое скольжение под элект­
рическим током высокой плотности является одним 
из экстремальных видов внешнего воздействия на 
материалы зоны контакта. Эксплуатация известных 
токосъемных материалов осуществляется обычно под 
токами плотностью 15 – 40 А/см2 при сухом скольже-
нии по медному контртелу. В общем случае известные 
токосъемные материалы не применяются для сухого 
скольжения при токах плотностью более 60 А/см2  [1], 
так как такое скольжение приводит к быстрому разру-
шению контактных слоев пары трения. 

Скольжение материала под током высокой плот­
ности (более 100 А/см2) представляет научный 
и  практический интерес. Трибосистема с токосъе-
мом должна иметь контактные слои, состояние кото-
рых обеспечивает высокую износостойкость и высо-
кую электропроводность контакта. Известно [2], что 
высокая электропроводность скользящего контакта 
металл/сталь обычно соответствует высокой износо­
стойкости под током высокой плотности. Поэтому 
увеличение электропроводности скользящего электри­
ческого контакта может привести одновременно к уве-
личению его износостойкости. Изменение парамет­
ров конструкции токосъемного узла может привести 
к улучшению характеристик контакта. 

Скользящий электроконтакт может быть реализован 
путем включения узла трения в цепь силовой вторичной 
обмотки трансформатора. Одно из основных уравнений 
идеального трансформатора может быть записано как

i1 – хх n1 = i1n1 + i2 n2
или 

 

где n1 и n2 – количество витков в первичной и вторич-
ной обмотках соответственно; i1 – хх – ток в первичной 
обмотке при холостом ходе трансформатора (i2 = 0); 
i1  и  i2  – токи в первичной и вторичной катушках при 
нагруженной вторичной обмотке (i2 > 0); k = n1/n2  – 
коэффициент трансформации. 

Отсюда видно, что значение i2 = (i1 – хх – i1)k (то есть 
формально i2 ) может быть увеличено при увеличении k 
в некоторых условиях. Ток i2 является током контакта 
(i2 = iс ) и его увеличение при низком падении контакт-
ного напряжения будет соответствовать увеличению 
электропроводности контакта. Поэтому предположение 
об увеличении контактного тока i2 = iс при увеличении 
k = n1/n2 должно быть проверено экспериментально. 
Некоторые металлы (вольфрам, молибден и др.) не спо-
собны к скольжению по стали с высокой электрической 
проводимостью контакта, поэтому они не могут слу-
жить модельными материалами для этих эксперимен-
тов. Сталь Ст3 является наиболее удобным модельным 
материалом. 

Целью настоящей работы является нахождение зако-
номерностей изменения электропроводности сухого 
скользящего электроконтакта сталь/сталь и его износо-
стойкости при разных коэффициентах трансформации 
питающего трансформатора. 

 Материалы и методики эксперимента

Низкоуглеродистая сталь Ст3 (0,2 % С) служила 
материалом для изготовления наклепанных образцов 
диаметром 3,5 мм и высотой 8 мм. Поверхности сколь-
жения изучены с помощью оптического микроскопа 
(ОМ Axiovert 200 M). Твердость образцов (Нμ = 2,1 ГПа) 
была определена на микротвердомере Мicro-Vickers 
TVM-5215-А под нагрузкой 1 Н. Рентгеновский фазо-
вый анализ контактных слоев образцов проведен на 
дифрактометре ДРОН-7 в излучении CоKα . Объемное 

(geometric) contact area consist of two sectors, where one sector has signs of melting. X-ray phase analysis has shown that the transfer layers 
contain more than 70 vol. % FeO. That is why the transfer layers could be represented as a quasi-dielectric medium, where FeO acts as a dielectric. 
The authors assume that strong self-induction pulses occur in the contact zone, which cause high-density displacement currents. These currents 
act directly on FeO ions and convert them into a melt. These concepts allow us to assert that the melt consists of atoms or ions of iron and oxygen. 
A decrease in the transformation coefficient (that is, an increase in the inductance of the secondary winding of the supply transformer) causes 
an  increase in self-induction pulses and displacement currents, which leads to an increase in the amount of FeO melt, its easy removal from 
the contact area, and a corresponding decrease in the wear resistance and electrical conductivity of the contact. The data obtained can serve as 
guidelines when choosing wear-resistant materials for high-current sliding contact and, in particular, when defining its design. 

Keywords: sliding electrical contact, contact electrical conductivity, wear intensity, adhesion, oxidation of friction zone, friction coefficient, melt on 
sliding surface, displacement current
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содержание фаз в контактном слое определено в соот-
ветствии с известным методом  [3; 4], где интенсив-
ность рентгеновской волны IHKL – j  , рассеянной от отра-
жающей плоскости (HKL) некоторой кристаллической 
j-ой фазы, записана в виде

		  IHKL – j = I0 k0 KHKL – j cv – j ,	 (1)

где I0 – интенсивность рентгеновской волны, падающей 
на многофазную поверхность; k0 – коэффициент, учи-
тывающий геометрические параметры рентгеновского 
аппарата; KHKL – j  – сложный коэффициент пропорцио-
нальности для j-ой фазы; cv – j – объемная концентрация 
данной j-ой фазы в многофазной среде. 

Качественный фазовый состав и интегральные 
интенсивности KHKL – j пиков следует найти из рентге-
нограмм (рис. 1, б), необходимые справочные данные – 
в  работе  [4]. Принимая во внимание, что Σcv – j = 1, 
можно найти объемные концентрации фаз. 

Нагружение материалов сухим трением под пере-
менным током (50 Гц) проведено при давлении 
р = 0,13 МПа в контакте при скорости скольжения 
v = 5 м/с по схеме вал – колодка (точнее pin-on-ring) 
(рис. 1, а). Хромель-копелевые термопары T1 , T2 , T3 
фиксировали на держателе образца с помощью винтов. 
Линейная интенсивность изнашивания определена как 
Ih = h/D (где h – изменение высоты образца на дистан-
ции скольжения D). Плотность тока в контакте опре-
делена как j = i2 /Aa (где i2 – ток в контакте; Aa – номи-
нальная площадь контакта). Удельная поверхностная 
электропроводность контакта определена как σA = j/U 
(где U  – контактное падение напряжения). Коэффи-
циент трения определен с помощью тензодатчика 
ZET7111. Перед испытанием образцы были притерты 
к контртелу (сталь 45 (Нμ = 5,8 ГПа)). Каждый тест был 
выполнен по три раза. 

 Результаты эксперимента

Очевидно, что исходная структура поверхностных 
слоев образцов стали Ст3 до трения содержит преи-
мущественно фазу α-Fe. Пики α-Fe, пики FeO высо-
кой интенсивности и пики γ-Fe слабой интенсивности 
наблюдаются на рентгенограммах контактных слоев 
стальных образцов после трения (рис. 1, б). Фазы FeO и 
γ-Fe появились на поверхности образцов под воздейст­
вием трения и тока. В равенство (1) были поставлены 
значения интенсивности самых сильных пиков I200 
(FeO), I111 (γ-Fe), I110 (α-Fe) и рассчитаны объемные кон-
центрации cv – j этих фаз в контактных слоях образцов 
после трения при любом k (см.  таблицу). Видно, что 
FeO является основной фазой в контактных слоях. Кон-
центрация γ-Fe имеет низкие значения для любого зна-
чения k и не может представлять интереса для обсуж­
дения. Параметры решеток фаз α-Fe, γ-Fe и FeO, как 
правило, близки к параметрам решеток этих же фаз из 
базы данных ASTM.

Очевидно, что FeO и γ-Fe фазы появились под воз-
действием тока, температуры и пластической дефор-
мации контактных слоев образцов. Деформация и раз-
рушение контактных слоев происходят в условиях 
фрикционной усталости. Плотность тока является 
главным фактором, задающим усталостное разрушение 
(износ) зоны электроконтакта. Увеличение плотности 
тока j в контакте вызывает увеличение интенсивности 
изнашивания Ih при любом значении k (рис. 2, а, б). 
Токовая зависимость электрической проводимости σA 
контакта имеет положительные наклоны в интервале 
j < 300 А/см2 при k = 67 и в интервале j < 100 А/см2 при 
k = 18. При j > 100 А/см2 и j > 300 А/см2 (рис. 2, а, б) 

Рис. 1. Схема скользящего электроконтакта типа pin-on-ring (a) 
(АТ – автотрансформатор; n1 и n2 – количество витков 

в первичной и вторичной обмотках) и рентгенограммы 
контактных слоев образцов стали Ст3 при трении 

при k = 67 и k = 18 (б)

Fig. 1. Scheme of sliding electrical contact of pin-on-ring 
configuration (a) (AT – autotransformer; n1 and n2 – number of turns 
in the primary and secondary windings) and X-ray diffraction patterns 

of contact layers of С235 steel samples under friction with k = 67 
and k = 18 (б)
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происходит резкое увеличение Ih , что указывает на 
начало катастрофического изнашивания. Одновре-
менно наклоны кривых σA (j) становятся отрицатель-
ными. Видно также, что σA (j) для контакта при k = 67 
заметно выше, чем при k = 18. Но Ih заметно ниже для 
контакта при k = 67, чем при k = 18.

Коэффициент трения слабо зависит от величины k, 
при скольжении без тока f  ≈ 0,7 и при увеличении j 
снижается до f  ≈ 0,4. Температуры (Т1 , Т2 , Т3 ) боко-
вой поверхности держателя образца являются пока-
зателями теплового состояния образца и держателя 
образца. Зависимости T(j) имеют нелинейность (напри-
мер, рис. 2, в). Изменение k не влияет заметно на харак-
тер кривых T(j) и на численные значения температур, 
которые могут быть выше 100 °С. Это может указы-
вать на одинаковость тепловых состояний контактных 
слоев образцов при скольжении при разных значениях k 
в режиме нормального изнашивания, то есть до начала 
катастрофического изнашивания.

Изношенные поверхности образцов имеют приблизи-
тельно одинаковый вид при любом значении k, а именно, 
контактная поверхность разделена на два сектора, имею­
щие разные морфологические детали (рис. 3, а). Сек-
тор 1 (светлая часть рис. 3, а) образуется на фронтальной 
части номинальной площади контакта образцов, то есть 
сектор  1 обращен навстречу набегающей поверхности 
трения контртела (рис. 1, а). Пластическая деформация 
и износ в секторе 1 протекают благодаря адгезии и про-
пахиванию неровностями контртела (рис. 3, б), что опи-
сано для обычного трения без тока, например, в рабо-
тах [5; 6]. Контактные слои в секторе 2 деформируются 
преимущественно по механизму вязкой жидкости, что 
детально видно на рис. 3, в. Это должно способствовать 
достаточно быстрой релаксации напряжений. Сущест-
вует некоторая переходная зона между этими секторами 
длиной более 10 мкм (для этих пар трения), где оба рас-
смотренные механизмы деформации осуществляются 
одновременно. Следует отметить, что появление рас-
плава в контактной зоне не сопровождается ее свече-
нием. Это значит, что температура зоны контакта меньше 
600 °С и природа расплава должна быть установлена.

Объемные концентрации фаз в контактном слое стали Ст3 и характеристики контакта (σAс , Ihc , jc )  
при скольжении под током при разных коэффициентах трансформации k питающего трансформатора  

(все параметры соответствуют началу катастрофического изнашивания)

Volumetric concentrations of phases in the contact layer of C235 steel and contact characteristics(σAс , Ihc , jc )  
in sliding under current with different transformation coefficients k of supply transformer  

(all parameters correspond to the catastrophic wear onset)

k = 67 k = 18
cv(FeO) cv(γ-Fe) cv(α-Fe) cv(FeO) cv(γ-Fe) cv(α-Fe)

0,77 0,02 0,21 0,80 0,03 0,17
σAс , См/cм2 Ihc , мкм/км jc, A/cм2 σAс , См/cм2 Ihc , мкм/км jc , A/cм2

176 44 300 19 67 100

Рис. 2. Токовые зависимости интенсивности изнашивания (Ih ) 
и удельной электрической проводимости (σA ) контакта  
при k = 67 (а) и k = 18 (б), а также температуры боковой  

поверхности образца на разных расстояниях от зоны контакта  
при скольжении при k = 67 (в) 

Fig. 2. Current dependences of wear intensity (Ih ) and contact 
specific electrical conductivity (σA ) with k = 67 (а), k = 18 (б), 

and temperatures of the sample holder side surface  
at different distances from the contact zone in sliding with k = 67 (в)
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 Обсуждение результатов

Выше было отмечено, что морфологические осо-
бенности изношенных поверхностей являются одина-
ковыми и механизмы разрушения контактных поверх-
ностей заметно не различаются. Фазовые составы 
контактных слоев также являются приблизительно оди-
наковыми (см. таблицу). Значения тепловой мощности 
(fpv + jU) внешнего воздействия, соответствующие 
началу катастрофического изнашивания, приблизи-
тельно одинаковы, что можно рассчитать из рис. 2, а, б. 
Очевидно, что слабое различие этих выходных пара-
метров трибосистемы с токосъемом не может служить 
удовлетворительной основой для понимания разницы 
в  скорости разрушения контактного слоя при разных 
значениях коэффициента трансформации k. Следует 
отметить, что скольжение без тока в присутствии окси-
дов  [7 – 10] и в отсутствии оксидов [11 – 13] в зоне 
контакта не приводит к появлению расплава на кон-
тактных поверхностях. Появления расплава не наблю-
далось также при скольжении под током низкой плот-
ности [14 – 16] или под током высокой плотности [17]. 
Поверхности контакта сталь/сталь в настоящей работе 
не содержали признаков расплава при j > 700 А/см2 в 
неподвижном контакте (v = 0 м/с). Эти сведения и пред-
ставленные наблюдения (рис. 2 и таблица) позволяют 
предполагать, что расплав появляется при некоторой 
скорости скольжения (v > 0 м/с), при некоторой плот-
ности тока (j > 0 А/см2) и при некоторой концентрации 
FeO (сFeO > 0). 

В общем случае, полная плотность тока j0 (в любом 
проводящем контуре) и, в частности, полная плотность 
тока в контакте может быть записана как j0 = jf + jD (где 
jf – плотность тока свободных зарядов; jD – плотность 
тока смещения (то есть плотность тока связанных 
зарядов)). Слои переноса содержат диэлектрик (FeO) 
с ионной поляризацией, здесь связанные заряды – это 
ионы в кристаллах FeO. Очевидно, что увеличение jD 

должно вызвать увеличение энергий ионов кислорода 
и железа в FeO кристаллах. Следует учесть, что адге-
зия и шероховатость в любом сухом контакте всегда 
задают прерывистый характер скольжения в режиме 
stick–slip. Это приводит к колебанию тока в контакте и 
к соответствующим импульсам самоиндукции. Обычно 
ЭДС самоиндукции записывается как ĕ = –Ldi/dt (где 
L – индуктивность проводящего контура; i – ток в про-
водящем контуре). Конструкция узла трения (рис. 1, а) 
содержит индуктивность L во вторичной обмотке 
трансформатора, питающего скользящий контакт (где 
L ~ n2; n  – количество витков в обмотке). Появление 
импульса ЭДС  (ĕ) в  контакте задает напряженность 
электрического поля Е в контакте, поэтому можно приб­
лиженно написать ĕ = –Ldi/dt ≈ |E|h0 (где h0 – некоторый 
параметр, который может характеризовать градиент 
электрического поля в контакте, м). Сейчас знание пара­
метра h0 не имеет значения, так как необходимо пока-
зать увеличение Е при увеличении L. Усиление импуль-
сов самоиндукции при увеличении L должно вызвать 
увеличение Е, ∂Е/∂t и, соответственно, jD . Следует 
отметить, что коэффициент трансформации питающего 
трансформатора снижается при увеличении L. Кроме 
того, напряжение в контакте при импульсах самоин-
дукции может заметно превышать среднее напряжение 
между контактными поверхностями. Эти импульсные 
напряжения задают высокие значения Е, ∂Е/∂t и соот-
ветствующие jD , способные разрушить кристалличе-
скую решетку FeO и перевести ионы FeO в расплав 
(рис. 3). Наиболее высокие значения jD должны быть 
в окрестности пятен контакта, поэтому расплав должен 
появляться только в пятнах контакта и их окрестностях 
и только в момент существования импульса самоин-
дукции. Очевидно, что увеличение значения jD за счет 
увеличения Е (в частности, за счет увеличения L) при-
ведет к увеличению энергии импульса самоиндукции, 
к более высоким нагрузкам в пятнах контакта и к более 
интенсивному разрушению слоя переноса. Не исклю-

Рис. 3. Номинальная площадь контакта (а) и морфологические изображения изношенных поверхностей образцов стали Ст3 
в секторе 1 (б) и в секторе 2 (в) при скольжении при k = 67 под током плотностью 300 А/см2 

Fig. 3. Nominal contact area (a) and morphological images of worn surfaces of C235 steel samples 
in sector 1 (б) and in sector 2 (в) when sliding at k = 67 under a current density of 300 A/cm2
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чено, что относительно сильные импульсы самоин-
дукции, соответствующие большой индуктивности L, 
вызывают образование относительно больших объемов 
расплава с низкой вязкостью. Последние два фактора 
(большой объем расплава и его низкая вязкость) спо-
собствуют ускорению разрушения слоя переноса. По 
этой причине расплав не следует рассматривать как 
хорошую смазку. Это значит, что увеличение L (то есть 
снижение k) приводит к более высокой Ih (рис. 2, а, б).

Следует ожидать, что толщина слоя расплава мень­
ше толщины слоя переноса. Присутствие расплава пре-
имущественно в секторе  2 позволяет предположить, 
что концентрация FeO в этом секторе выше, чем в 
секторе  1. Это указывает на общую неравномерность 
распределения FeO в слое переноса. Представленные 
здесь параметры контакта сталь/сталь соответствуют 
круглой номинальной площади контакта. Значения 
этих параметров близки к значениям, соответствую-
щим прямоугольным номинальным площадям кон-
такта  [18]. Следует отметить, что расплав может поя-
виться при низкой концентрации оксидов в контактном 
слое, имеющем два сектора (например, контакты W/Mo 
или W/сталь [19], а также сталь/сталь, где есть только 
расплав  [20]). Одинаковые морфологические виды 
и фазовые составы слоев переноса, содержащих более 
70 об. % FeO, позволяют ожидать проявления этих 
особенностей во многих контактах металл/сталь при 
скольжении под током. 

 Выводы

В настоящей работе осуществлено сухое скольже-
ние стали Ст3 по закаленной стали 45 под воздействием 
переменного электрического тока плотностью выше 
100 А/см2 при изменении коэффициента трансформа-
ции питающего трансформатора. Снижение коэффи-
циента трансформации обеспечивалось за счет увели-
чения индуктивности питающей вторичной обмотки 
трансформатора. 

Снижение коэффициента трансформации вызывало 
снижение электропроводности контакта, увеличение 
интенсивности изнашивания и снижение плотности 
тока, соответствующие началу катастрофического 
изнашивания. 

В зоне скользящего контакта под током образуются 
слои переноса, которые имеют два морфологически 
разных сектора на изношенных поверхностях при раз-
ных коэффициентах трансформации: один сектор  – 
признаки деформации под воздействием адгезии, дру-
гой сектор деформирован с образованием расплава.

Установлено, что слои переноса содержат более 
70 об. % FeO.

Предложено объяснение образования расплава: при-
влеченные в рассмотрение большие токи смещения 
возникают в результате сильных импульсов самоин­

дукции в контакте, которые воздействуют на ионы FeO 
и вызывают плавление контакта. 

Снижение коэффициента трансформации вызывает 
высокие импульсы самоиндукции и соответствующие 
высокие плотности тока смещения. Это задает относи-
тельно сильное энергетическое воздействие на контакт-
ный слой и его высокий износ. 
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Аннотация. Сплавы специального назначения на основе системы Al – Si – Cu в современных условиях широко используются в различных 

отраслях промышленности, включая двигателе- и приборостроение. В работе изучено влияние отжига в интервале 100 – 900 °С на микро-
структуру, плотность и микротвердость сплава Al – 30 % Si – 50 % Cu. С помощью сканирующей электронной микроскопии установлено, 
что с повышением температуры отжига происходят изменение формы частиц эвтектического кремния и их коагуляция. Согласно резуль-
татам микрорентгеноспектрального анализа изменение строения эвтектики сопровождается сегрегацией меди в ее отдельных участках. 
После отжига происходит небольшое уменьшение плотности и микротвердости сплава. 
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Abstract. Special-purpose alloys based on the Al – Si – Cu system are widely used in various industries, including engine and instrument engineering. 

The effect of annealing in the range of 100 – 900 °C on microstructure, density, and microhardness of Al – 30 % Si – 50 % Cu alloy was studied. 
Scanning electron microscopy showed that as the annealing temperature increases, the form of eutectic silicon particles changes and their coagulation 
occurs. According to the results of microrentgenospectral analysis, change in the eutectic structure is accompanied by segregation of copper in its 
individual sections. After annealing, there is a slight decrease in density and microhardness of the alloy. 

Keywords: special alloys, aluminum, silicon, copper, annealing, microstructure, eutectic, microhardness, density
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 Введение

Сплавы специального назначения на основе сис-
темы Al – Si, легированные медью, никелем и другими 
элементами, все более широко используются в совре-
менных отраслях промышленности, в частности, в дви-
гателестроении, приборостроении, электронике и аэро-
космической промышленности  [1 – 4]. В различных 
функциональных узлах приборов эти сплавы зачастую 
работают в контакте с элементами, изготовленными из 

различных сталей или керамики, и поэтому их харак-
теристики должны быть согласованы по величине 
температурного коэффициента линейного расширения 
(ТКЛР). Это обеспечивает размерную стабильность 
приборов и, если необходимо, вакуум-плотные спаи. 
Помимо регламентированного значения ТКЛР от спе-
циальных сплавов требуются хорошая износостойкость 
и малая плотность, удельные механические свойства 
таких сплавов находятся на уровне свойств среднеугле-
родистых конструкционных сталей  [5; 6]. Поскольку 
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многие изделия приборной техники предназначены для 
работы в широком диапазоне температур, то свойства 
специальных сплавов должны быть стабильными 
вплоть до предельных температур эксплуатации. Для 
стабилизации свойств сплавы алюминия с кремнием 
заэвтектического состава легируют тугоплавкими эле-
ментами, модифицируют, а также подвергают терми­
ческой обработке [7 – 9].

Ранее проведенные исследования позволили уста­
новить, что низким и стабильным ТКЛР в широком 
интервале температур обладают сплавы алюминий  – 
кремний заэвтектического состава, легированные 
медью в количестве, равном или превышающем содер-
жание кремния в сплаве [10]. 

В связи с этим в настоящей работе изучено влияние 
изохронного отжига при температурах 100 – 900 °С 
(время выдержки 11 ч, охлаждение на воздухе) на 
микроструктуру, плотность и микротвердость сплава 
Al – 30 % Si – 50 % Cu.

 Материалы и методы исследования

Материалами исследования являлись силумины 
с содержанием кремния 30 %, меди 50 %. Исходным 
материалом для приготовления сплавов являлись алю-
миний марки А7, кремний марки Кр0 и медь марки М1.

Алюминий марки А7 расплавляли и добавляли 
последовательно кремний и медь в количестве 30 и 50 % 
соответственно. После полного растворения легирую-
щих элементов расплав подвергали обработке влажным 
доломитом мелкой фракции, температура обработки 
составляла 880 °С. После выстаивания расплава прово-
дили заливку с температуры 1100 °С в холодный алю-
миниевый кокиль.

Термическую обработку при температурах 100, 250 
и  350 °С проводили в электрических шкафах сопро-
тивления СНОЛ  – 3,5.3,5.3,5/3,5  – И2М с рабочим 
пространством 350×350×350 мм и разбегом темпе-
ратуры в  рабочем пространстве ±5 °С. Термическую 
обработку при более высоких температурах от 500 
до 900 °С проводили в электрических печах сопротив-
ления СНОЛ – 1,6.2,5.1/9 – И3 с рабочим пространст-
вом 160×250×100 мм и разбегом температуры в рабо-
чем интервале испытания ±5 °С.

Структурный анализ образцов из сплава Al – 30 % Si – 
– 50 % Cu был проведен с помощью микроскопа KYKY 
EM6900 Std SEM (лаборатория Электронной микроско-
пии и обработки изображений СибГИУ) в режиме вто-
ричных и обратно рассеянных электронов (SE + BSE) 
при ускоряющем напряжении HV = 25 ÷ 30 кВ, рабочем 
расстоянии WD = 15 ÷ 18 мм; увеличение изменяли от 
200 до 1000 крат. Для оценки характера распределения 
элементов между структурными составляющими был 
проведен микрорентгеноспектральный анализ (МРСА) 
с использованием модуля энергодисперсионной спект-
роскопии (EDS). 

Плотность определяли методом гидростатического 
взвешивания с помощью аналитических весов WA-21 
с точностью до  0,0001 г. Микротвердость измеряли 
на цифровом микротвердомере модели HVS-1000 при 
нагрузке 0,245 Н (25 гс).

 Результаты исследования и их обсуждение

Методы сканирующей электронной микроскопии 
(СЭМ) нашли широкое применение в решении кон-
кретных научных и технологических задач вследствие 
их высокой информативности и достоверности полу-
чаемых результатов исследования  [2 – 5]. Благодаря 
большой глубине резкости СЭМ позволяет детально 
изучить строение гетерофазных сплавов с ярко выра-
женным микрорельефом поверхности шлифа при боль-
ших увеличениях, и, что особенно важно,  – строение 
эвтектики (см. рисунок).

Изучение микроструктуры высоколегированного 
сплава Al – 30 % Si – 50 % Cu при различных увели-
чениях позволило установить, что в ее формировании 
ведущую роль играют кристаллы первичного кремния 
(КПК), имеющие пластинчатую форму. В областях 
между КПК располагаются участки тройной эвтектики 
(α + Si + CuAl2 ) мелкоигольчатого строения, образо-
ванием которой завершается кристаллизация сплава. 
Дополнительно было проведено картирование по пло-
щади шлифа для определения элементного состава 
структурных составляющих. По результатам картиро-
вания установлено, что кремний преимущественно рас-
полагается в КПК и его небольшая часть содержится в 
эвтектике. Большое количество меди находится именно 
в эвтектике тройного сплава Al – 30 % Si – 50 % Cu. 
Алюминий также равномерно распределен по эвтектике. 
Небольшое увеличение концентрации железа можно 
наблюдать в эвтектике в виде фаз игольчатой формы.

Как показал МРСА в различных точках эвтектики, 
а  также при сканировании вдоль линии (см. рису-
нок, а), преобладающим элементом в составе эвтектики 
является медь (57 – 80 %), содержание кремния не пре-
вышает 35 %, алюминия – 8 – 13 %. Наиболее высокое 
содержание меди – в темных участках (80 %), наимень-
шее  – в игольчатых кристаллах размерами до  1 мкм 
(57 %). Темные области соответствуют местонахожде-
нию интерметаллидов равновесного (CuAl2 ) и неравно-
весного (Cu4Al9 и CuAl) составов.

В работе установлено, что отличительной особен-
ностью высокомедистого сплава Al – 30 % Si – 50 % Cu 
является его высокая температурная стойкость, вследст-
вие которой возможно проведение длительного отжига 
не только в интервале 400 – 500 °С (как для двойных 
силуминов), но и при 700 – 900 °С.

Электронно-микроскопический анализ показал, что 
длительный отжиг при температуре 710 °С приводит 
к изменению строения эвтектики с тонкоигольчатого 
на мелкодисперсное, частицы эвтектического кремния 
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приобретают округлую форму (см. рисунок, б). Топо-
графический контраст подчеркивает рельеф поверх­
ности образца. Темные округлые кристаллы – это крем-
ний, в остальном объеме эвтектики преимущественно 
находятся медь (53 – 68 %) и алюминий (8 – 18 %).

После высокотемпературного отжига при 900 °С 
в эвтектике формируются довольно крупные кристаллы 
кремния (до  10 мкм) с четкими гранями (см.  рису-
нок, в). Между кристаллами в светлой зоне сегрегирует 
медь (до 75 %) и определяется до 17 – 20 % алюминия. 
В некоторых участках содержатся все легирующие эле-
менты, что подтверждает наличие тройной эвтектики 
(α + Si + CuAl2 ).

Было изучено влияние температуры отжига на плот-
ность (ρ) и микротвердость (μ) сплава Al – 30 % Si – 

– 50 % Cu (см. таблицу). Микротвердость измеряли по 
эвтектике, усредняя результаты не менее четырех изме-
рений.

Из полученных данных следует, что с повышением 
температуры отжига сплава происходит уменьше-
ние его плотности и микротвердости. Так, если плот-
ность и микротвердость исходного сплава составляют 
4,4113 г/см3 и 413,6 HV соответственно, то после отжига 
при 900 °С плотность уменьшается до  4,2067 г/см3, 
микротвердость – до 345,5 HV. Небольшое уменьшение 
плотности (не более 5 %) можно объяснить увеличе-
нием растворимости водорода, поглощенного сплавом 
из атмосферы печи, а также увеличением скорости диф-
фузионных процессов. Уменьшение микротвердости 
(не более 16 %) связано с коагуляцией эвтектического 
кремния и увеличением неоднородности распределе-
ния легирующих элементов.

 Выводы

Отличительной особенностью высокомедистого 
сплава Al – 30 % Si – 50 % Cu является его высокая тер-
мическая стойкость, вследствие которой возможно про-
ведение длительного отжига в интервале 700 – 900 °С, 
что неприемлемо для двойных силуминов.

Электронно-микроскопический анализ позволил 
установить, что с повышением температуры отжига 
высоколегированного сплава Al – 30 % Si – 50 % Cu 
происходят изменение формы частиц эвтектического 
кремния и их коагуляция, которая сопровождается 
изменением характера распределения меди и ее сегре-

Влияние температуры отжига на плотность 
и микротвердость высокомедистого силумина

Effect of annealing temperature on density 
and microhardness of high-copper silumin

Температура 
отжига, °С

ρ,
г/см3

Погрешность 
Δρ·10–5

μ,
HV

исходный 4,4113 4,3332 413,6
100 4,3594 4,3332 341,0
250 4,3270 4,2620 386,0
560 4,3182 4,2427 354,6
710 4,2152 4,0210 408,5
900 4,2067 4,0030 345,5

Микроструктура сплава Al – 30 % Si – 50 % Cu (1000×) и диаграмма распределения химических элементов (сканирование вдоль линии): 
а – в исходном состоянии; б и в – после отжига при 710 и 900 °С

Al – 30 % Si – 50 % Cu alloy microstructure (1000×) and chemical elements distribution diagram (scanning along the line): 
а – in initial state; б and в – after annealing at 710 and 900 °C
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гацией в отдельных участках эвтектики. После отжига 
при 710 и 900 °С процессы восходящей диффузии при-
водят к усилению гетерогенизации сплава. Кроме того, 
с повышением температуры отжига сплава происходит 
небольшое уменьшение его плотности и микротвердо-
сти, что также объясняется увеличением скорости диф-
фузионных процессов.
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Аннотация. При изготовлении лент аморфных сплавов (АС) методом сверхбыстрого одновалкового спиннингования существует проблема 

различия качества их поверхностей. На стороне лент, прилегающей к закалочному барабану, возникают структурные неоднородности, 
которые могут нарушать изотропию свойств. В связи с этим существует потребность в разработке перспективной технологии поверх-
ностного модифицирования АС, которая позволит не только устранять шероховатости, но и контролируемо управлять структурой по 
глубине ленты, а также селективно обрабатывать отдельные ее участки для повышения механических, магнитных и каталитических 
характеристик. Применение короткоимпульсных лазерных установок имеет большой потенциал для реализации этих целей. В работе 
с  привлечением профилометрии, инденирования, оптической и просвечивающей электронной микроскопии комплексно изучено 
влияние воздействия эксимерного ультрафиолетового лазера, работающего в нанометровом диапазоне длин волн на структурную 
эволюцию, механическое поведение и морфологические видоизменения поверхности АС Fe53,3Ni26,5B20,2 при варьировании числа 
импульсов и их частоты. Показано, что лазерное облучение контактной, матовой стороны исследуемой ленты АС по подобранному 
режиму (100 импульсов, f = 20 Гц, E = 150 мДж, W = 0,6 Дж/см2) эффективно воздействует на рельеф поверхности, сглаживает произ-
водственные неровности (поры, газовые строчки, царапины и т. д.). Кроме того, установлены параметры лазерной обработки, способст-
вующие размягчению структуры АС, а значит улучшению обрабатываемости для возможного формования, а также режим перевода АС 
в аморфно-нанокристаллическое состояние с повышенной твердостью и сохранением способности к пластическому сдвигу. 

Ключевые слова: аморфный сплав, лазерное облучение, поверхность, твердость, структура, аморфно-нанокристаллическое состояние, нано-
кристалл, упрочнение, размягчение
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Abstract. The problem of differences in surface quality exists in the production of amorphous alloy (AA) ribbons by ultra-fast single-roll melt spin-

ning. Structural inhomogeneities that can disrupt the isotropy of properties occur on the side of the ribbons adjacent to the quenching drum. In this 
regard, there is a need to develop a promising surface modification technology of AA which will not only eliminate roughness, but also controllingly 
manage the structure along the ribbon depth, as well as selective processing of its individual sections to improve mechanical, magnetic and catalytic 
characteristics. Application of short-pulse laser systems has great potential for achieving these goals. In this research work, the effect of an excimer 
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 Введение

Аморфные сплавы (АС) – это сильно переохлажден-
ные материалы, характеризующиеся температурой 
стеклования, ниже которой преобладает энергетически 
нестабильное некристаллическое состояние [1; 2]. Эта 
структурная особенность обеспечивает сочетание вяз-
кости с превосходной прочностью, твердостью и пре-
делом упругости до  2 % из-за отсутствия дальнего 
порядка  [3 – 5]. Кроме того, помимо превосходных 
механических характеристик, ряд АС имеют высокий 
уровень магнитных свойств, коррозионную стойкость, 
биосовместимость, что делает их привлекательными 
для различных применений  [6 – 9]. Существующие 
методы изготовления АС, такие как литье в  медную 
изложницу и спиннингование, эффективны для сохра-
нения стеклообразного состояния, но сталкиваются 
со значительными ограничениями в отношении мас-
штабируемости АС, их критических размеров и  гео-
метрической сложности. Кроме того, АС  – трудно­
обрабатываемый материал, имеющий узкий диапазон 
термической стабильности и хрупкость при повы-
шенных температурах  [10; 11]. Все эти проблемы 
побуждают исследователей к поиску более передовых 
производственных технологий создания и обработки 
АС для расширения их инженерных применений. 
В  последние годы интерес ученых сконцентрирован 
на фундаментальном изучении структурной модифи-
кации, фазообразования и отклика свойств в АС под 
действием лазерного излучения  [12 – 14]. Внедрение 
селективной лазерной плавки со сверхбыстрой ско­
ростью охлаждения – весьма многообещающий метод 
для изготовления объемных АС  [15 – 18]. Лазерно-
индуцированное периодическое структурирование 
поверхности АС позволяет: 

– окрашивать их в разные цвета путем создания 
оксидных пленок разной толщины [19]; 

– варьировать гидрофобное/фильное поведение 
в тестах на смачивание [20]; 

– управлять доменной структурой и магнитным 
поведением [21];

– снижать трение и износ в трибологических при­
ложениях [22];

– изготавливать точные дифракционные решетки 
для сенсорных устройств и т. д. [23]. 

Поверхностная функционализация АС потенциаль­
но может расширить сферу их применения или доба-
вить новые функции к изделиям из АС.

Импульсная лазерная обработка имеет преиму­
щества высокой пиковой мощности и плотности энер-
гии, контролируемого теплового эффекта, быстрого 
нагрева и охлаждения, высокой точности, малой дефор-
мации в материале по сравнению с непрерывными 
лазерами  [14; 24]. Длительность импульса определяет 
степень тепловой диффузии, которая имеет важное зна-
чение в наносекундных лазерах в отличие от фемто­
секундных, вызывающих релаксацию фононов [25; 26]. 
Наносекундная лазерная обработка с бóльшими зонами 
воздействия и бóльшей глубиной проникновения поз­
воляет настроить магнитное поведение АС, модифи-
цировать механические свойства АС, изменяя микро-
структуру их поверхности [27 – 30]. Однако существует 
ряд вопросов, которые остро стоят, например:

– каким образом при отсутствии глубокого понима-
ния механизмов взаимодействия короткоимпульсного 
лазерного излучения с АС найти наиболее точно опи-
сывающие их физические модели;

– можно ли получить лучшие свойства материала 
с помощью градиентных композитных аморфно-крис­
таллических структур за счет импульсной лазерной 
обработки;

– как контролируемо и эффективно проектировать 
структуру АС и какие оптимальные параметры лазера 
выбирать.

В настоящее время проводится много экспери-
ментов по импульсной лазерной обработке объемных 
АС на основе циркония, титана и меди. Что касается 
быстрозакаленных аморфных лент на основе железа, 
то данных по этому тематическому направлению 
мало, они разрознены и требуют дальнейших поиско-
вых исследований. Следует акцентировать, что АС на 
основе железа заслуживают пристального внимания 
из-за их дешевого сырья, выдающихся механических 
и магнитомягких характеристик и превосходной 
каталитической активности. Оптимизация процесса 
по совершенствованию функциональных свойств 

ultraviolet laser operating in nanometer wavelength range on the structural evolution, mechanical behavior and morphological changes of the surface 
of Fe53.3Ni26.5B20.2 AA with varying the pulse number and their frequency were comprehensively studied using profilometry, indentation, optical and 
transmission electron microscopy methods. It is shown that laser irradiation of the contact matte side of the studied AA ribbon according to the selected 
mode (100 pulses, f = 20 Hz, E = 150 mJ, W = 0.6 J/cm2) effectively acts upon the surface relief and smoothes out production irregularities (pores, gas 
lines, scratches, etc.). In addition, the laser processing parameters are established that contribute to the AA structure softening, and therefore improve 
workability for possible forming, as well as the mode of transfer AA to an amorphous-nanocrystalline state with increased hardness and preservation 
of the ability to flow shear. 

Keywords: amorphous alloy, laser irradiation, surface, hardness, structure, amorphous-nanocrystalline state, nanocrystal, hardening, softening
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и управлению их структурой за счет лазерного облуче-
ния является актуальной задачей.

Цель настоящей работы – изучить влияние воз­
действия эксимерного ультрафиолетового лазера, 
работающего в нанометровом диапазоне длин волн 
на структурно-фазовые превращения, механический 
отклик и  морфологические видоизменения поверх­
ности АС системы Fe – Ni – B при варьировании числа 
импульсов и их частоты.

 Материалы и методика исследований

Объектом исследования выбран быстрозакаленный 
АС Fe53,3Ni26,5B20,2 , полученный методом спиннингова-
ния в виде ленты шириной 10 мм и толщиной 25 мкм.

Облучение опытных образцов АС проводилось 
эксимерным ультрафиолетовым (УФ) KrF лазером 
серии CL-7100 (Оптосистемы, Россия) с длиной волны 
λ = 248 нм и длительностью импульса τ = 20 нс. Лазер-
ное воздействие при варьировании частоты следования f 
от 2 до 50 Гц осуществлялось через круговую диафрагму 
площадью S = 7 мм2 по двум режимам: при 100 импуль-
сах и при 500 импульсах. В обоих случаях энергия 
импульса E составляла 150 мДж, плотность энергии 
W = 0,6 Дж/см2. Облучению подвергалась контактная, 
матовая сторона ленты АС, т. е. прилегающая в процессе 
ее получения к закалочному медному барабану.

Твердость HIT определялась с помощью динамиче-
ского ультрамикротвердомера DUH-211S (Shimadzu, 
Япония). Индентирование осуществлялось по стан-
дарту ISO 14577 с использованием алмазного наконеч-
ника Виккерса при нагрузке 10 мН в режиме «нагруже-
ние–разгружение» со скоростью 70 мН/с.

Структурные исследования АС проводились с при-
влечением просвечивающей электронной микроскопии 
(ПЭМ) на установке JEM 2100 (JEOL, Япония).

Морфологические особенности облученных зон на 
поверхности АС изучались с помощью инвертирован-

ного металлографического микроскопа GX51 (Olympus, 
Япония). Оценка шероховатости проводилась в соот-
ветствии с  ГОСТ  2789–73 по данным профилометра 
NewView 7300 (Zygo, США).

 Результаты работы и их обсуждение

На рис. 1 представлен внешний вид ленты иссле-
дованного АС с двух сторон в исходном состоянии. 
В  отличие от неконтактной стороны с зеркальной 
поверхностью (рис. 1, а), контактная сторона характе-
ризуется наличием протяженных неровностей: ямок, 
каверн, газовых строчек, вытянутых вдоль оси ленты 
(рис. 1, б). Формирование такого микрорельефа связано 
с взаимодействием лужицы расплава с приграничным 
газовым слоем на неидеально ровной поверхности зака-
лочного барабана  [31]. Дефекты, создавая внутренние 
напряжения, оказывают негативное влияние на отклик 
магнитных свойств АС  [32 – 34]. В контексте этого, 
актуальными задачами являются разработка техноло-
гии лазерного модифицирования и подбор эффектив-
ного режима сглаживания шероховатой поверхности 
лент АС, улучшение ее износостойкости при сохране-
нии аморфного состояния.

После воздействия эксимерного УФ лазера по пер-
вому режиму облучения изучены особенности видоиз-
менения поверхности АС (рис. 2).

Выявлено, что лазерная обработка способствует 
устранению шероховатости контактной стороны 
ленты. Однако при 2 Гц процесс проходит неравно-
мерно. В центре круговой зоны лазерного воздействия 
отмечено качественное «залечивание» неровностей 
(рис. 2, а), но при приближении к краю часто встре­
чаются крупные рельефные дефекты, которые остают­
ся индиферентны к лазерному излучению (рис. 2, б).

Частотный диапазон f = 10 – 50 Гц способствует 
более равномерному лазерному ударному воздейст-
вию по всей площади зоны облучения (рис. 2, в – д), но 

Рис. 1. Морфология неконтактной (а) и контактной (б) сторон ленты АС Fe53,3Ni26,5B20,2 до облучения

Fig. 1. Morphology of non-contact (a) and contact (б) sides of the ribbon of Fe53.3Ni26.5B20.2 amorphous alloy before irradiation
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проработка по высоте неровностей Rz разная. На рис. 3 
приведены результаты профилометрии исследуемой 
ленты как в исходном состоянии, так и в зонах лазер-
ного воздействия, представленных на рис. 1, 2. Скани-
рование рельефа поверхности осуществлялось поперек 
оси ленты.

Видно, что наилучший результат сглаживания 
и  схлопывание, в том числе объемных скоплений из 
газовых строчек, соответствует частоте следования 
импульсов f = 20 Гц (рис. 2, г и кривая 6 на рис. 3).

В таблице отражены расчетные данные оценки 
рельефа поверхности. Они подтверждают, что частота 
20 Гц оптимальна для лазерной модификации с целью 
выравнивания контактной стороны ленты и приближе-

ния ее по качеству к идеально гладкой неконтактной 
стороне, имеющей наиболее высокий 13 класс шерохо-
ватости.

Далее было проведено изучение механического 
отклика материала – оценка твердости АС в результате 
лазерного облучения. При 100 импульсах, по мере уве-
личения их частоты, наблюдается размягчение мате-
риала (рис. 4, кривая  1). При f = 20 Гц твердость HIT 
снижается на 35 % относительно исходного значения 
(НIT0 = 6 ГПа), соответствующего необработанному 
материалу. При f = 50 Гц величина HIT незначительно 
увеличивается до 5,4 ГПа.

После лазерной обработки при 500 импульсах зави-
симость HIT (f) имеет более сложный характер, который 

Рис. 2. Морфология облученной поверхности АС Fe53,3Ni26,5B20,2 
при 100 импульсах в зависимости от изменения частоты 

их следования: 
а – 2 Гц (центр зоны облучения); б – 2 Гц (край зоны); 

в – 10 Гц; г – 20 Гц; д – 50 Гц

Fig. 2. Dependence of morphology of irradiated surface 
of Fe53.3Ni26.5B20.2 amorphous alloy at 100 pulses on the pulse frequency:
а – 2 Hz (center of irradiation zone), б – 2 Hz (edge of irradiation zone); 

в – 10 Hz, г – 20 Hz, д – 50 Hz

Рис. 3. Профилограммы поверхности ленты АС Fe53,3Ni26,5B20,2 
до и после лазерного облучения: 

1 и 2 – неконтактная и контактная стороны (без обработки); 
3 – 2 Гц (центр); 4 – 2 Гц (край); 5 – 10 Гц; 6 – 20 Гц; 7 – 50 Гц

Fig. 3. Surface profilograms of the ribbon of Fe53.3Ni26.5B20.2 
amorphous alloy before and after laser irradiation: 

1 and 2 – non-contact and contact sides (without treatment); 
3 – 2 Hz (center); 4 – 2 Hz (edge); 5 – 10 Hz; 6 – 20 Hz; 7 – 50 Hz
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выражен в наличии двух максимумов при  2 и 20 Гц 
(рис. 4, кривая  2). При достижении f = 50 Гц обнару-
жено разупрочнение, т. е. твердость уменьшается до 
5,8 ГПа и приближается к значению HIT , соответствую­
щему облучению 100 импульсами при той же частоте.

Таким образом, можно заключить, что обработка экси­
мерным лазером по режиму 100 импульсов, f = 20 Гц, 
E = 150 мДж, W = 0,6 Дж/см2 является эффективным 
способом улучшения пластичности АС. Рассмотрим 
механизм, приводящий к снижению твердости в случае 
поведения кривой 1 на рис. 4. Во время процесса облу-
чения лазерные импульсы высокой плотности энергии 
и короткой длительности распространяются от поверх-
ности вглубь материала, генерируя сильную ударную 
волну [12; 13]. Когда пиковое давление ударной волны 
превышает предел текучести, АС подвергается плас­
тической деформации, и внутри ленты облегчается 
образование зоны остаточного напряжения с полосами 

сдвига и свободным объемом, что приводит к улучше-
нию пластичности АС [14].

В свою очередь, облучение в режиме 500 импуль-
сов (кривая  2 на рис. 4), E = 150 мДж, W = 0,6 Дж/см2 
при f = 2 Гц, способствует оптимальному упрочению 
АС в пределах аморфного состояния, а при f = 20 Гц – 
наибольшему упрочнению в пределах аморфно-нано-
кристаллического состояния, что подтверждается дан-
ными ПЭМ-исследований.

На рис. 5, 6 представлены ПЭМ-изображения, 
демонстрирующие эволюцию структуры изученного 
АС при изменении числа импульсов и их частоты.

Видно, что при первом режиме лазерной обработки 
(100 импульсов) аморфность сохраняется в диапазоне 
частот f = 2 – 20 Гц (рис. 5, а – г). На микроэлектронно-
граммах вокруг неотклоненного пучка электронов при-
сутствуют два размытых гало от аморфной фазы, а на 
ПЭМ-снимках – типовой контраст «соль–перец» имею-
щий абсорбционную природу, который практически не 
изменяется при смене светлопольного на темнопольное 
изображение. Однако при достижении f = 20 Гц наблю-
дается некоторое нарушение однородности контраста 
аморфной структуры, предшествующее кристаллиза-
ции (рис. 5, в), и уширение гало. Аморфное состояние 
локально перестраивается таким образом, что в нем 
облегчаются процессы пластической деформации. Это, 
в свою очередь, выражается спадом структурно-чувст­
вительной характеристики HIT . При данной частоте 
лазерного воздействия происходит перегруппировка 
и коалесценция свободного объема, облегчая формиро-
вание и распространение полос сдвига. 

При f = 50 Гц в аморфной матрице выделяются нано-
кристаллы α-Fe с ОЦК-решеткой, γ-Fe с ГЦК-решет-
кой, объемная доля которых составляет 40 % (рис. 5, д). 
Размер нанокристаллов лежит в диапазоне 20 – 70 нм. 
Наличие двух фаз (аморфной и нанокристаллической) 
приводит к росту твердости материала.

Для второго режима облучения АС (500 импуль-
сов) переход от аморфного (рис. 6, а) к аморфно-нано­
кристаллическому состоянию происходит при меньших 

Параметры профилометрии поверхности АС Fe53,3Ni26,5B20,2 до и после лазерного облучения 
100 импульсами, E = 150 мДж, W = 0,6 Дж/см2 при варьировании частоты, 

I и II – неконтактная и контактная стороны ленты

Surface profilometry parameters of Fe53.3Ni26.5B20.2 amorphous alloy before and after laser irradiation 
at 100 pulses, E = 150 mJ, W = 0.6 J/cm2 and varying frequency, 

I and II – non-contact and contact sides of the ribbon

Характеристика
поверхности 

До 
облучения После облучения

I II
f, Гц

2
10 20 50

центр край
Высота неровностей Rz , мкм 0,08 1,60 0,19 1,00 0,39 0,10 0,78

Класс шероховатости 13 9 12 9 11 13 10

Рис. 4. Зависимость твердости АС Fe53,3Ni26,5B20,2 от частоты лазера: 
1 – 100 импульсов; 2 – 500 импульсов 

Fig. 4. Laser frequency dependence of hardness of Fe53.3Ni26.5B20.2 
amorphous alloy:

1 – 100 pulses; 2 – 500 pulses
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частотах, т. е. при f = 20 Гц (рис. 6, б). Присутствие двух 
структурных составляющих наряду с высокой твер­
достью обеспечивает реализацию пластического сдвига – 
на рис. 6, б видно распространение полос сдвига (их оги-
бание, ветвление и торможение на нанокристаллах).

Увеличение частоты следования лазерных импуль-
сов до 50 Гц стимулирует процесс кристаллизации в АС. 
Наряду с выделением кристаллических фаз α, γ-(Fe,Ni) 
и эвтектики γ-(Fe,Ni) + Fe3B наблюдается рост зерен 
(рис. 6, в). Это, соответственно, приводит к  разупроч-
нению, т. е. снижению HIT (кривая 2 на рис. 4).

 Выводы

Наносекундные эксимерные УФ лазеры предостав-
ляют большие возможности для относительно низкой 
по стоимости, экологичной, сверхточной, качествен-
ной, избирательной обработки АС с малыми потерями. 
Они обеспечивают высокую передачу энергии и могут 
производить большую плотность лазерной энергии. 
Их использование позволяет активировать при подоб­
ранных параметрах воздействия как процесс омоложе-
ния структуры АС, сопровождающийся разрыхлением, 

Рис. 5. ПЭМ-изображения и микроэлектронограммы структуры АС Fe53,3Ni26,5B20,2 после лазерной обработки 100 импульсами:
а – 2 Гц, светлое поле; б – 2 Гц, темное поле; 

в – 20 Гц, светлое поле; г – 20 Гц, темное поле; д – 50 Гц, светлое поле

Fig. 5. TEM images and the corresponding selected area electron diffraction patterns of Fe53.3Ni26.5B20.2 amorphous alloy structure 
after laser treatment at 100 pulses:

а – 2 Hz, bright-field image; б – 2 Hz, dark-field image; 
в – 20 Hz, bright-field image; г – 20 Hz, dark-field image; д – 50 Hz, bright-field image

Рис. 6. ПЭМ-изображения и микроэлектронограммы структуры АС Fe53,3Ni26,5B20,2 после лазерной обработки 500 импульсами:
а – 2 Гц, темное поле; б – 20 Гц, светлое поле; в – 50 Гц, светлое поле

Fig. 6. TEM images and the corresponding selected area electron diffraction patterns of Fe53.3Ni26.5B20.2 amorphous alloy structure 
after laser treatment at 500 pulses:

а – 2 Hz, dark-field image; б – 20 Hz, bright-field image; в – 50 Hz, bright-field image



Известия вузов. Черная металлургия. 2025;68(6):598–606.
Пермякова И.Е., Иванов А.А. и др. Инженерия поверхности аморфного сплава Fe53,3Ni26,5B20,2 эксимерным лазером

604

размягчением, а значит, улучшением их обрабатывае-
мости и формования, так и частичную кристаллизацию 
для достижения наилучшей прочности и удовлетвори-
тельной пластичности.

Показано, что облучение эксимерным УФ лазе-
ром контактной (матовой) стороны быстрозакаленной 
ленты АС Fe53,3Ni26,5B20,2 по подобранному режиму: 
100 импульсов, f = 20 Гц, E = 150 мДж, W = 0,6 Дж/см2 
наиболее эффективно воздействует на рельеф поверх-
ности, снижает ее шероховатость, устраняет производ-
ственные неровности (поры, газовые строчки и т. д.), 
сформированные в процессе спиннингования.

Установлен немонотонный характер изменения 
твердости HIT АС Fe53,3Ni26,5B20,2 в зависимости от 
частоты следования лазерных импульсов. Воздействие 
100 импульсами при 20 Гц приводит к выраженному 
размягчающему эффекту с сохранением аморфного 
состояния для исследованного АС. В структуре проис-
ходят атомные перестройки без диффузии на дальние 
расстояния. В свою очередь, увеличение числа импуль-
сов до  500 способствует их накоплению в материале, 
интенсификации лазерного нагрева, сопровождающему 
двухстадийное упрочнение при 2 и 20 Гц и последую-
щий спад HIT при 50 Гц. Такое поведение связано со 
сменой структурной релаксации в АС (с изменением 
локального топологического и композиционного упо-
рядочения) на процесс кристаллизации (с зарождением 
и появлением кристаллических фаз, ростом зерен).
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Аннотация. Статья предназначена для исследователей, работающих в области переохлажденных расплавов. В ней рассматривается важный 

теоретический вопрос, связанный с возможностью установления локального термодинамического равновесия на границе раздела фаз 
при кристаллизации из переохлажденных металлических расплавов. Такие процессы играют ключевую роль в формировании структуры 
материалов при их затвердевании, особенно в условиях быстрого охлаждения, характерных для современных технологий металлургии 
и порошковой металлургии. При переохлаждении в расплаве начинают формироваться зародыши новой твердой фазы. Для математи-
ческого описания роста зародыша необходимо задать граничные условия, определяющие состав прилегающей жидкой фазы. В тради-
ционных подходах предполагается, что вблизи зародыша может быть установлено локальное равновесие, параметры которого извле­
каются из равновесной диаграммы состояния. Однако, как показали исследования авторов для двухкомпонентных систем, в некоторых 
случаях локальное равновесие невозможно в принципе. В данной работе проведен теоретический анализ условий равновесия. Для этого 
рассматривались химические потенциалы компонентов обеих фаз: твердого зародыша и жидкого расплава. По равновесной диаграмме 
состояния соответствующей макросистемы можно составить представление о химических потенциалах их компонентов, в частности, 
в какой фазе химический потенциал каждого компонента ниже. Показано, что, когда зародыш новой фазы состоит из одного компонента, 
такое локальное равновесие, в принципе, всегда возможно. Однако, когда зародыш является раствором, такое возможно лишь при опре-
деленных условиях. В этих случаях применение граничных условий первого рода становится некорректным, и необходимо учитывать 
скорости химических реакций перехода каждого компонента из одной фазы в другую. 

Ключевые слова: локальное равновесие, переохлажденный расплав, кристаллизация, сверхбыстрое переохлаждение, фазовое равновесие, 
диаграмма состояния

Для цитирования: Дрозин А.Д., Дудоров М.В. Критерии существования локальных равновесий в переохлажденных расплавах. Известия 
вузов. Черная металлургия. 2025;68(6):607–612. https://doi.org/10.17073/0368-0797-2025-6-607-612
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Abstract. The paper is intended for researchers studying of supercooled metallic melts. It addresses an important theoretical problem: the possi-

bility of  establishing local thermodynamic equilibrium at the phase boundary during crystallization from a supercooled melt. Such processes 
play a crucial role in determining the microstructure of materials during solidification, particularly under rapid cooling conditions characteristic 
of modern metallurgical and powder technologies. During supercooling, nuclei of a new, solid phase begin to form in the melt. To mathemati-
cally describe the growth of such nuclei, it is necessary to specify boundary conditions that define the composition of the adjacent liquid phase. 
Traditional models assume that local equilibrium can be established near the nucleus and that its parameters can be derived from the equilibrium 
phase diagram. However, as demonstrated by our study of binary systems, local equilibrium may, in some cases, be fundamentally unattainable. 
This article presents a theoretical analysis of the conditions under which equilibrium may or may not be established. The analysis considers 
chemical potentials of the components in both the solid nucleus and the liquid melt. Based on the equilibrium phase diagram of the corresponding 
macrosystem, one can infer the relative chemical potentials of the components in each phase. It is shown that when the nucleus consists of a single 
component, local equilibrium is always possible in principle. However, when the nucleus is a solution, equilibrium may only be realized under 
specific thermodynamic conditions. In such cases, the application of first-kind boundary conditions becomes invalid, and it is necessary to take into 
account the rates of chemical reactions involved in the interphase transfer of each component. 
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 Введение

Изучение кинетики образования и роста кристал-
лов при сверхбыстром охлаждении расплава стало 
особенно актуальным в последнее время в связи с раз-
витием нанотехнологий и широким применением 
аморфных сплавов. Для расчета скоростей роста нано-
кристаллов [1 – 3] в расплаве или, например, в аморф-
ном сплаве при отжиге [4 – 5] нужно знать концентра-
ции компонентов расплава на их поверхностях.

Целью настоящей работы является теоретический 
анализ условий, при которых локальное равновесие 
может (или не может) быть установлено на границе 
между твердым зародышем и переохлажденным рас-
плавом.

Рассмотрим случай, когда двухкомпонентный 
металлический расплав моментально охлаждается до 
температуры ниже температуры солидус. В нем начи-
нают образовываться зародыши новой фазы – твердого 
металла. Для составления дифференциальных урав-
нений, определяющих процесс роста этого зародыша, 
необходимо задать граничные условия, в данном слу-
чае, концентрации компонентов жидкого расплава на 
границе раздела фаз. Традиционно предполагается, что 
всякая система стремится прийти в равновесное состоя­
ние и, хотя настоящего равновесия в переохлажденном 
жидком расплаве быть не может, можно считать, что 
на нано расстояниях от зародыша состав жидкой фазы 
будет почти равновесным – установится локальное рав-
новесие. Данные об этом равновесии можно получить 
из равновесной диаграммы состояния. Однако, как 
показало исследование авторов данной статьи, во мно-
гих случаях такое приближение некорректно. 

Полученные нами выводы об отклонении от локаль-
ного равновесия подтверждаются результатами иссле-
дований эффектов «захвата примеси», обусловленных 
высокой скоростью роста кристаллов в расплаве [6 – 9]. 
Теоретические исследования ряда авторов  [10 – 13], 
а  также наши исследования  [14 – 15] позволяют выя-
вить некоторые закономерности протекания указанных 
процессов. Экспериментальные исследования различ-
ных систем  [16 – 17], в частности переохлажденных 
металлических расплавов [18 – 20], подтверждают про-
явление таких эффектов на практике. Между тем до 
настоящего времени не были сформулированы общие 
термодинамические критерии, позволяющие оценить 
условия локального равновесия при росте кристаллов. 
Настоящая работа посвящена такому исследованию. 

Для оценки условий равновесия рассмотрим про-
цессы, связанные с равновесием фаз через химические 
потенциалы их компонентов:

		         	 (1)

где  – не зависящая от концентраций часть химичес­
кого потенциала i-го компонента, R  – универсальная 
газовая постоянная, T  – температура, ai  – активность 
i-го компонента. Для общности рассмотрения из всех 
свойств химических потенциалов используем только 
следующие:

– зависимость активности компонента фазы от кон-
центрации этого компонента является монотонно воз-
растающей непрерывной функцией;

– при концентрации компонента, стремящейся 
к  нулю, его активность также стремится к нулю, сле-
довательно, из уравнения (1), значение химического 
потенциала стремится к минус бесконечности. При 
этом вклад этого компонента в свободную энергию 
Гиббса фазы также стремится к нулю.

 Двухкомпонентная система с равновесием
 

по одному компоненту

Рассмотрим модельный случай жидкого раствора 
(расплава) компонентов A и B с равновесной диаграм-
мой состояния, изображенной на рис. 1, при темпера-
туре T1 . На основании диаграммы можно сделать ряд 
заключений о химических потенциалах компонентов 
фаз. Поскольку при доле компонента B, соответствую­
щей чистому компоненту A, система в равновесии 
находится в твердом состоянии, химический потен-
циал компонента A в твердой фазе должен быть ниже, 
чем в жидкой фазе: . Обозначим символом x 
долю компонента B соответствующей фазе и прове-
дем, в соответствии с приведенными выше положе­
ниями, линию 

Поскольку, в соответствии с уравнением (1), при 
x → 1 химический потенциал  → –∞ и (0) больше 

(0), то по теореме Больцано-Коши для непрерыв-
ных функций  [21] существует точка x, где (x) =   . 
В показанном на рис. 1 случае для температуры T1 это 
концентрация x1 .

Заметим, что эти же рассуждения справедливы и 
для температур ниже эвтектической. Локальное рав-
новесие будет устанавливаться между зародышем 
твердой фазы и жидкой фазой, имеющей состав, соот-
ветствующий продолжению линии ликвидуса. Это 
положение применимо при наличии аппроксимации 
(или аналитического выражения) линии ликвидуса 
ниже линии солидус.

Анализ ограничился компонентом A, поскольку 
компонент B в зародыше отсутствует и его химический 
потенциал не влияет на фазовое равновесие. Aналогич-

Keywords: local equilibrium, supercooled melt, crystallization, rapid solidification, phase equilibrium, phase diagram

For citation: Drozin A.D., Dudorov M.V. Criteria for the existence of local equilibria in supercooled melts. Izvestiya. Ferrous Metallurgy. 
2025;68(6):607–612. https://doi.org/10.17073/0368-0797-2025-6-607-612

https://fermet.misis.ru/index.php/jour/search/?subject=local equilibrium
https://fermet.misis.ru/index.php/jour/search/?subject=supercooled melt
https://fermet.misis.ru/index.php/jour/search/?subject=crystallization
https://fermet.misis.ru/index.php/jour/search/?subject=rapid solidification
https://fermet.misis.ru/index.php/jour/search/?subject=phase equilibrium
https://fermet.misis.ru/index.php/jour/search/?subject=phase diagram
https://doi.org/10.17073/0368-0797-2025-6-607-612


Izvestiya. Ferrous Metallurgy. 2025;68(6):607–612.
Drozin A.D., Dudorov M.V. Criteria for the existence of local equilibria in supercooled melts

609

ные рассуждения можно провести для роста кристалла 
фазы B. 

В соответствии с рис. 1, при температуре T1 заро-
дыши из чистого компонента B находятся в локальном 
равновесии с раствором состава x2 .

 Двухкомпонентная система с равновесием
 

по двум компонентам

Рассмотрим следующий, более сложный случай. 
Пусть компоненты A и B обладают неограниченной 
взаимной растворимостью в жидком и твердом состоя-
ниях в соответствии с диаграммой на рис. 2.

Исходя из диаграммы (рис. 2, а), сделаем нужные 
заключения о химических потенциалах компонентов 
при температуре T1 . Поскольку при доле компонента B, 
соответствующей чистому компоненту A: x = 0, сис-
тема в равновесии находится в твердом состоянии, то 
химический потенциал компонента A в твердой фазе   
должен быть меньше, чем химический потенциал ком-
понента A в жидкой фазе , как это и отображено на 

Рис. 1. Диаграмма состояния (а) и химические потенциалы 
компонентов системы (б) с эвтектической диаграммой состояния 

при температуре T1

Fig. 1.  Phase diagram (a) and chemical potentials of the 
components (б) in a system with eutectic phase diagram  

at temperature T1

Рис. 2. Диаграммы состояния (а, в) и химические потенциалы 
компонентов системы с неограниченной взаимной растворимостью 

компонентов в жидком и твердом состояниях при температуре T1 
при неполном равновесии (б) и при полном равновесии (г) 

между жидкой и твердой фазами

Fig. 2. Binary phase diagrams (a, в) and chemical potentials 
of the components with unlimited mutual solubility at temperature T1 : 

partial (б) and complete (г) equilibrium between the liquid 
and solid phases
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рис. 2, б. Проведем в соответствии с уравнением  (1) 
линии  =   (x) и  =   (x). В общем случае, линия   
должна лежать выше и правее линии   . Проведем ана-
логичные построения с величинами, относящимися 
к компоненту B. Так как при концентрации x = 1, соот-
ветствующей чистому компоненту B, система в равно-
весии находится в жидком состоянии, то химический 
потенциал компонента B в жидкой фазе  должен 
быть меньше, чем химический потенциал компо-
нента  B в  твердой фазе , как это и отображено на 
рис. 2, б. Проведем в соответствии с уравнением  (1) 
линии  =   (x) и  =   (x). В общем случае линия  
должна лежать выше и левее линии .

Заметим также, что взаимное расположение хими-
ческих потенциалов компонентов A и B не имеет значе-
ния для наших рассуждений.

Чтобы система находилась в равновесии по компо-
ненту A, необходимо, чтобы составы жидкой и твердой 
фаз были такими, что  Геометрически 
это означает, что составы, определяемые точками пере-
сечения линий  (x) и  (x) с любой горизонтальной 
прямой будут равновесными по компоненту A. Таких 
пар составов бесконечное множество. 

Однако для равновесия системы необходимо еще 
и равновесие по компоненту B при тех же концентра-
циях. Так, если состав твердой фазы будет соответст­
вовать точке x1 на рис. 2, б, то, несмотря на то, что 
химические потенциалы компонента A в обеих фазах 
будут равны, по компоненту B равновесие не достиг-
нется. Химический потенциал компонента B в жидкой 
фазе больше, чем в твердой, и будет происходить пере-
ход компонента B из жидкой фазы в твердую. Равно-
весие по компоненту  A нарушится и состав твердой 
фазы изменится. В случае, представленном на рис. 2, б, 
в  результате перераспределения концентраций обе 
фазы будут обогащаться компонентом B. Этот процесс 
закончится лишь тогда, когда точка x1 займет положе-
ние xSE, а x2 – положение xLE.

Выясним, когда возможно подлинное равнове-
сие – по обоим компонентам. При равновесии должны 
одновременно выполняться равенства:   
 

и , где xL и xS доли компонента B в жид- 
 

кой и твердой фазах соответственно. Как видно из 
рис. 2, в, г, для этого необходимо и достаточно, чтобы 
химические сродства реакций перехода из жидкой фазы  
 

в твердую компонента A:  и компонента B:  
 

имели разные знаки, т. е. либо ,  
 

либо .
Докажем это математически. Для простоты рас-

смотрим случай, когда активности компонентов равны 
их мольным долям. При равновесии должны однов-
ременно выполняться равенства:   
 

и  . Используя уравнение  (1), запишем 
эти соотношения в виде:

      (2)

Введем обозначения

	    	 (3)

Из системы уравнений (2) следует, что не может 
быть KA = 1 или KB = 1 или KA = KB , так как тогда полу-
чается, что KA = KB = 1 и xL = xS, что в данном случае не 
реализуется.

За исключением этих вариантов, из уравнения (2) 
получаем

	        	 (4)

Однако из формул (4) могут получиться и физически 
нереальные результаты (отрицательные или большие 
единицы). Выясним, при каких значениях KA и KB будет 
выполняться 0 ≤ xS ≤ 1, 0 ≤ xL ≤ 1, т. е.

	    	 (5)

Исследование системы неравенств (5) показывает, 
что они выполняются в случаях, когда (KA < 1, KB > 1), 
либо, наоборот, (KA > 1, KB < 1). С учетом обозначений, 
приведенных в уравнении (3), получаем, что равновесие 
в расматриваемой системе возможно, если химические 
сродства  и   имеют разные знаки: если для одного 
компонента, например, для A:  >  , то для второго 
должно быть обязательно наоборот:  <  . Таким 
образом, критерием возможности локального равнове-
сия являются условия

 
    (6)

Рассмотрим случай, когда эти условия не выпол­
няются: та же система при температуре T2 ниже линии 
солидус (рис. 3).

При температуре ниже линии солидус оба компо-
нента в чистом виде находятся в твердом состоянии:  
 

 и необходимые условия равнове- 
 

сия фаз не выполняются. Это видно из рис. 3, так как 
кривая   находится выше и правее кривой  при рав-
новесии по компоненту A xS < xL.
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Для компонента B кривая  находится выше и левее 
кривой  и равновесие по компоненту B возможно, 
только если xL < xS. Вместе эти условия выполняться не 
могут – равновесие невозможно.

Таким образом, при температурах ниже линии 
солидус, когда оба компонента находятся в твердом 
состоянии, условия равновесия по обоим компонен-
там не могут быть выполнены одновременно. Ана-
лиз показывает, что в этом случае любое локальное 
равновесие между жидкой и твердой фазами невоз-
можно, поскольку оно требует противоречивых значе-
ний химических потенциалов. Следовательно, любые 
попытки аналитического продолжения равновесных 
линий в область твердых переохлажденных расплавов 
не имеют термодинамического обоснования и не могут 
быть использованы для корректного описания фазовых 
переходов при переохлаждении.

 Обсуждение результатов исследования

Целью данной работы являлось использование рав-
новесных диаграмм состояния для изучения динамики 

зародышеобразования и роста зародышей новой фазы. 
Очевидно, что при быстром охлаждении система не 
достигает глобального равновесия, однако в окрест­
ности границы между твердой и жидкой фазами может 
устанавливаться квазиравновесное локальное состоя­
ние, что позволяет использовать термодинамичес­
кие подходы. Использование локальных равновесий 
является важным принципом неравновесной термоди-
намики. 

Проведенный анализ показал, что такие локальные 
равновесия возможны не всегда. В случае, если заро-
дыш состоит из одного компонента, квазиравновесное 
описание применимо. При наличии двух и более компо-
нентов возможность локального равновесия определя-
ется соотношением показателей химического сродства 
перехода между фазами. В частности, если данные 
показатели имеют одинаковый знак, локальное равно-
весие невозможно, и фазовые переходы должны описы-
ваться исключительно с использованием кинетических 
моделей.

Предложенный подход может быть обобщен на 
более сложные системы при наличии функциональных 
зависимостей активностей компонентов фаз от состава. 
В дальнейшем для более точного моделирования роста 
зародышей требуется дополнение модели уравнениями 
диффузии, описывающими перенос вещества к границе 
раздела фаз и уравнениями, определяющими скорости 
химических реакций перехода компонентов между 
фазами.

 Выводы

Разработан метод определения возможности сущест­
вования локального равновесия между твердым заро­
дышем и жидкой (маточной) фазой на основе анализа 
химических потенциалов компонентов. С необходи-
мыми модификациями данный подход может быть при-
менен к реальным многокомпонентным системам. В тех 
случаях, когда установление локального равновесия 
невозможно, математическое описание процесса крис­
таллизации должно включать не только уравнения диф-
фузии, но и уравнения, описывающие скорости межфаз-
ных химических реакций для каждого компонента.
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Аннотация. При кристаллизации жидкого металла в оболочковой литейной форме на ее поверхностях возникают значительные нормальные 

напряжения: на внутренней – сжимающие, на наружной – растягивающие. Особенно ярко они проявляются в начальный момент времени 
охлаждения. Это может привести к повреждению литейной формы, а значит, и к повреждению кристаллизующейся металлической 
отливки. Снизить уровень напряженно-деформированного состояния в поверхностных слоях можно с помощью нанесения на внешнюю 
и внутреннюю поверхности специальных кольцевых (температурных) выточек (швов). В настоящей работе сформулирована и решена 
задача по влиянию температурных швов во внутренних и внешних слоях оболочковой формы (ОФ) на уровень её напряженно-деформи-
рованного состояния (НДС) при кристаллизации стальной отливки. В качестве параметра стойкости ОФ к трещинообразованию приняты 
нормальные напряжения σ22 , σ33 , возникающие как на внутренней, так и внешней поверхностях ОФ в начальный момент заливки металла 
и охлаждения стальной отливки. Рассматривается осесимметричная задача для цилиндрической керамической ОФ. На основе сформу-
лированной целевой функции приведен алгоритм решения задачи с использованием уравнений линейной теории упругости, уравнения 
теплопроводности и апробированного численного метода. В результате решения задачи определено минимальное количество и места 
расположения выточек на внутренней и внешней поверхности ОФ, обеспечивающих уменьшение нормальных напряжений. Результаты 
решения задачи представлены в виде эпюр напряжений по сечениям рассматриваемой области. Дан анализ полученных результатов стой-
кости ОФ к трещинообразованию. Даны рекомендации по использованию результатов работы в различных научно-технических областях. 
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 Введение

Литье по выплавляемым моделям остается одной из 
самых востребованных технологий получения отливок 
высокой геометрической сложности с сохранением тре-
буемой точности. 

Недостатком этого метода литья является высо-
кий процент брака оболочковых форм (ОФ), что свя-
зано с образованием микро- или макротрещин в них, 
их частичным или полным разрушением в процессе 
формообразования, а, главным образом, на технологи­
ческих операциях (прокаливании, заливки их расплавом 
в начальной стадии охлаждения отливки) из-за неравно-
мерного нагрева по толщине литейной ОФ. Такая низкая 
стойкость ОФ связана с повышенным уровнем напря-
женно-деформированного состояния (НДС) в них. Для 
снижения влияния таких воздействий в производстве 
применяют различные технологические решения. 

Вопросам исследования НДС литейных многослой-
ных оболочковых форм посвящены работы как оте­
чественных, так и зарубежных исследователей. Так, 
в работах [1; 2] отражено влияние формы и геометрии 
ОФ, в  работах  [3; 4]  – толщины стенки ОФ, в рабо-
тах [5; 6] – материала формы, а в работах [7 – 9] – гео-
метрии отливки. Отечественные исследования, посвя-
щенные рассматриваемой проблеме, представлены 

в работах [10 – 13]. Аналогичные проблемы изучались 
и при литье в кокиль [14; 15]. 

Настоящая работа является продолжением иссле­
дований авторов по трещиностойкости керамической 
ОФ по выплавляемым моделям при получении в ней 
металлических отливок. В ранних работах авторов 
с помощью математического моделирования изучалось 
НДС цилиндрических ОФ при заливке их жидким метал-
лом. В результате теоретического анализа были найдены 
оптимальные физические параметры материала ОФ и ее 
морфологической структуры, оказывающие решающее 
влияние на трещиностойкость. Эти исследования легли 
в основу разработанных новых видов (типов, образцов) 
ОФ, по которым получены патенты РФ на изобретения 
(№ 2743439, № 2763359) и др.

В основу теоретических исследований авторов 
положен численный метод  [16], с помощью которого 
решаются задачи в следующей постановке: жидкий 
металл заливается в многослойную ОФ, в которой 
он затвердевает в виде отливок; в процессе охлажде-
ния отливки определяется НДС и температура в сече-
ниях ОФ.

На начальном этапе исследования проводились на 
отливке в виде цилиндра со сферическим закруглением 
в данной части, что имитирует модель отливки в виде 
стояка в ОФ.

  diss@knastu.ru
Abstract. During the crystallization of liquid metal in a shell casting mold, significant normal stresses occur on its surfaces. On the inner – compres-

sive, on the outer – tensile. They are especially pronounced at the initial moment of cooling time. This can lead to damage to the casting mold, and 
hence damage to the crystallizing metal casting. It is possible to reduce the level of stress-strain state in the surface layers by applying special annular 
(temperature) recesses (seams) to the outer and inner surfaces. In this paper, the problem of the influence of temperature seams in inner and outer 
layers of a shell mold (SM) on the level of its stress-strain state (SSS) during crystallization of a steel casting was formulated and solved. The normal 
stresses σ22 , σ33 , which occur both on the inner and outer surfaces of SM at the initial moment of metal casting and cooling of the steel casting, are 
accepted as a parameter of SM resistance to cracking. An axisymmetric problem for a cylindrical ceramic SM is considered. Based on the formulated 
objective function, the paper presents an algorithm for solving the problem using the equations of the linear theory of elasticity, the equation of thermal 
conductivity and the proven numerical method. As a result of solving the problem, the minimum number and locations of recesses on the inner and 
outer surfaces of SM, ensuring a decrease in normal stresses, were determined. The results of solving the problem are presented in the form of stress 
plots across the sections of the considered area. The authors analyzed the obtained results of SM resistance to cracking and gave recommendations 
on the use of the obtained results in various scientific and technical fields. 
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Дальнейшие теоретические исследования цилинд­
рических ОФ были связаны с установлением влияния 
силового воздействия опорного наполнителя  (ОН) 
и  параметров межслойного трения в ОФ на ее 
НДС [17; 18], по результатам которых также получены 
патенты (№ 2769192, № 2788296).

Как показал производственный опыт контроля стой-
кости литейных форм, наиболее непредсказуемой фор-
мой получаемой отливки является сферическая или 
шарообразная. Для таких ОФ определен оптимальный 
угол их охвата опорным наполнителем и его влияние на 
уровень НДС в ОФ [19].

Математическое моделирование таких процессов 
с использованием численных методов представлено 
в зарубежных работах [20 – 22], а моделирование НДС 
в затвердевающей отливке – в работах [23; 24].

Поиск новых технологических решений по сниже-
нию критического уровня НДС в ОФ позволил пред-
ложить новую конструкцию литейной керамической 
ОФ  [25], основанную на известном методе снижения 
параметров термических напряжений в отливках за счет 
применения так называемых «ребер жесткости» [26].

Выявлено повышение стойкости сферической литей-
ной ОФ за счет наличия на внутренней поверхности 
формы кольцевых (температурных) швов или выточек. 
Повышение стойкости при наличии таких швов уста-
новлено и в металлических литейных формах. 

Отметим, что при заливке стали в ОФ сфериче-
ской геометрии внутренние нормальные напряжения 
в сечении полностью сжимающие, причем довольно 
большой величины, в связи с чем теоретические иссле-
дования сводились к поиску условий, способствую-
щих уменьшению (по модулю) этих напряжений. Наи-
более эффективной оказалась конструкция литейной 
формы с кольцевыми швами в облицовочном слое [25]. 
В  литейных формах цилиндрической конфигурации 
наибольшую опасность представляют растягивающие 
нормальные напряжения на поверхности соприкосно-
вения формы с ОН.

В настоящей работе рассматривается литейная кера-
мическая форма с цилиндрическим участком и теоре-
тически анализируется влияние температурных швов 
не только на внешнем слое ОФ, но и на внутренней 
ее поверхности. Рассматривается «жесткий» вариант 
литейной формы: монослойная керамическая с пос­
тоянным модулем сдвига.

 Математическая постановка задачи

Рассматривается осесимметричное тело вращения 
(рис. 1), имеющее жидкую фазу (металл) (I), затверде-
вающую корочку  (II), оболочковую форму  (III), опор-
ный наполнитель (IV), круговые выточки ai на поверх-
ности облицовочного слоя (поверхности S2 ) и круговые 
выточки bi на поверхности соприкосновения формы (III) 
с опорным наполнителем (IV) (поверхности S3 ). 

Пусть А  – конечное множество круговых выточек 
ai на поверхности S2 ; A = {ai , i = 1, ..., n}; В – конечное 
множество круговых выточек bi на поверхности S3 ; 
B = {bk , k = 1, ..., m}. Положим, C = A   B. Как следует 
из многочисленных работ авторов, опасными напряже-
ниями при заливке стали в ОФ являются σ22 , σ33 . При-
чем при охлаждении стали в ОФ с цилиндрическими 
участками опасными являются растягивающие напря-
жения σ22 на поверхности S3 , а при охлаждении стали 
в ОФ сферической конфигурации опасными являются 
сжимающие напряжения σ33 на поверхности S2 .

Сформулируем задачу.
Требуется найти такое наименьшее количество 

выточек А на поверхности S2 ОФ и количество выто-
чек  В на поверхности S3 , а также их геометрическое 
расположение, чтобы при охлаждении металла в литей-
ной форме (ЛФ) наибольшие (по модулю) напряжения 
в области Q при τ = τ* не превышали заданных ограни-
чений:

Рис. 1. Расчетная схема системы с указанием поверхности 
к граничным условиям задачи: 

S1 – поверхность контакта жидкого и затвердевшего металла; 
S2 – внутренняя поверхность контакта затвердевшего металла  

и керамической формы; 
S3 – внешняя поверхность контакта керамической формы  

с опорным наполнителем; 
I – жидкий металл; II – корочка затвердевшего металла; 

III – оболочковая форма; IV – опорный наполнитель; R – радиус 
сферической части ОФ; h – высота цилиндрической части ОФ

Fig. 1. Calculation scheme of the system with indication of the surface 
to the problem boundary conditions: 

S1 – inner contact surface of liquid and solidified metal; 
S2 – inner contact surface of solidified metal and ceramic mold; 
S3 – outer contact surface of ceramic mold and supporting filler; 

I – liquid metal; II – crust of solidified metal; 
III – shell mold (SM); IV – supporting filler; 

R – radius of SM spherical part; h – height of SM cylindrical part



Известия вузов. Черная металлургия. 2025;68(6):613–620.
Евстигнеев А.И., Одиноков В.И. и др. Влияние кольцевых швов на напряженно-деформированное состояние ...

616

		           	 (1)

здесь Q  – область меридианного сечения; τ*  – макси-
мальное время охлаждения, после которого темпера-
тура по области Q начинает выравниваться и нормаль-
ные напряжения σ22 , σ33 начинают уменьшаться (по 
модулю).

Значение τ* определим из функции

		        	 (2)

при ограничении τ ≤ 60 с.
Для определения F запишем систему уравнений в 

декартовой системе координат для каждой из подоб­
ластей (рис. 1), используя линейную теорию упругости:

– область I:

		    	 (3)

– области II, III:

    (4)

где σij – компоненты тензора напряжений; σ – гидроста-
тическое напряжение; εij  – компоненты тензора упру-
гих деформаций; h  – высота столба жидкого металла;  
 

 – коэффициент объемного сжатия; μ – коэф- 
 

фициент Пуассона; E – модуль Юнга; Gp (θ)  – модуль 
сдвига в области p (p = II, III); αp – коэффициент линей-
ного расширения; a1  – коэффициент температуропро-
водности в области  (I); τ  – время; θ  – температура; 
Cp – удельная теплоемкость в области (p); γ – удельный 
вес;  – начальная температура в области (p); λ = λ (θ) – 
коэффициент теплопроводности; используется сумми-
рование по повторяющимся индексам.

В процессе охлаждения жидкого металла при усло-
вии, что температура металла θм ≤ θк (θк – температура 
кристаллизации), определяется толщина затвердевшего 
слоя Δi из решения уравнения межфазового перехода.

Начальные условия задачи:
 – отсутствие твердой фазы металла;

 – температура разливаемого жидкого ме- 
 

талла;
 – начальная температура формы. 

Граничные условия задачи в ортогональных коорди-
натах (рис. 1): 

 – для осесимметричной задачи 

	        	 (5)

– на оси симметрии

U2 = 0; σ21 = 0; qn = 0; θ = θм ;

– на поверхностях S1 , S3 , S4

	            	 (6)

где Uск  – перемещение материала формы при сколь-
жении относительно ОН (песка), U*  – нормирующее 
перемещение; ψ – параметр, характеризующий условия 
трения между формой и опорным наполнителем; τs  – 
условный предел текучести при сдвиге; qn – тепловой 
поток.

При решении температурной задачи использовались 
граничные условия первого рода. Для определения 
θм (τ) и θ*

 (τ) воспользуемся данными работы [27]:

		         	 (7)

здесь τ – время охлаждения, с;  = 1550 °С; θ1 = 100 °C; 
θ0 = 20 °С; θ* – температура на поверхности S3 ; τ1 = 60 с; 
τ1 = 1 с.

Время τ не превышает 60 с, так как при τ ≥ 60  с 
напряжения в ОФ не представляют опасности разруше-
ния.

Примем модуль сдвига ОФ

		      Gф = 2960 кг/мм2.	 (8)

Алгоритм решения системы (4) при граничных 
условиях (5) – (7) подробно описан в работе [27]. 

Расчет показал следующее:

	            F = –65,6 МПа; τx = 21,65 с.	 (9)

Результат решения приведен на рис. 2 в виде эпюр 
по сечению рассматриваемой оболочки. Напряжения 
σ22 , σ33 весьма значимы. На облицовочном слое σ22 , σ33 
отрицательны и достигают значительной величины на 
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цилиндрической части ОФ, причем |σ33| > |σ22| в 1,5 раза. 
На сферической части σ22 и σ33 меньше отличаются, но, 
приближаясь к цилиндрической области, разница между 
ними весьма значительна. На наружном слое (контакте 
с  опорным наполнителем) напряжения σ22 положи-
тельны. Причем на сферической части примерно оди-
наковой величины, а на цилиндрической – возрастают 
к верхней части формы. Напряжения σ33 на этой поверх-
ности (поверхность S3 ) сопоставимы с  напряжением 
σ22 в сферической части и практически равны нулю на 
цилиндрической. Из рис. 2 видим, что напряжения σ33 , 
σ22 при заливке стали в керамическую форму значи-
тельно превосходят (по модулю) ограничения (1).

Зная значения τ*  (9), перейдем к решению постав-
ленной задачи. Рассматривается процесс охлаждения 
стали в керамической форме с температурными швами 
(круговыми выточками). В отличие от предыдущей 
задачи сечение Q представляет многосвязную область. 
Начальные и граничные условия во многом совпадают 
с предыдущей задачей. Граничные условия (6) допол-
няются (рис. 1):

  (10)

Выполняется также соотношение (7) при принятом 
значении модуля сдвига (8). 

 Алгоритм решения задачи

1. Задаются геометрические размеры области, 
конечное время охлаждения τ*, геометрические раз-
меры выточек и их начальные координаты на S2 , S3 : 
ai (0), bi (0). Время охлаждения τ* разбивается на конеч-
ное число шагов:  (где n – номер временного  
 

шага).
2. Исследуемая область разбивается системой орто-

гональных поверхностей на конечное число элементов.
3. Вычисляются длины дуг элементов  (i, k = 1, 2, 3; 

i ≠ k; j = 1, 2).
4. Задаются начальные и граничные условия по эле-

ментам, образующим рассматриваемую область (5), (6), 
(10), и константы физико-механических свойств мате-
риалов.

5. Определяется поле температур на временном 
шаге Δτn численным решением уравнения теплопровод-
ности с использованием итерационной формулы  [27], 
при наличии начальных и граничных условий на дан-
ном временном шаге. Наличие выточек при решении 
температурной задачи не учитывалось.

6. Если выполняется условие  области  (I)  
 

у поверхности S2 , то вычисляется толщина закристал-
лизовавшейся корочки Δn .

7. Решается система уравнений (3), (4) с учетом гра-
ничных условий (6), (10), разностных аналогов и раз-
работанной методики с использованием программы 
«Одиссей»1. Определяются поля напряжений σij и пере-
мещений Ui (i, j = 1, 2).

8. На поверхности S3 проводится оценка при-
легания формы к ОН по каждому элементу: если 

 проводится переназначение  
 

граничных условий и выполняется операция 7.
9. Проводится шаг по времени. По формулам (7) 

уточняются граничные условия решения температур- 
 

ной задачи. Если  то выполняется опера- 
 

ция 5. Если  то выполняется операция 10.
10. По области Q анализируются значения σ33 , σ22 

и выбираются наибольшие (по модулю) значения, пре-
восходящие ограничения (1). Формируются матрицы 

. Если ограничения (1) выполняются, то сле-
дует операция 12.

11. Из матрицы  выбираются наибольшие, 
и в этих сечениях выполняются выточки. Выполняется 
операция 7.

12. Процесс расчета заканчивается. 

1 Одиноков В.И., Прокудин А.Н., Сергеева А.М., Севастья-
нов Г.М. Свидетельство о государственной регистрации программы 
для ЭВМ №2012111389. ОДИССЕЙ. Зарегистрировано в Реестре 
программ для ЭВМ 13.12.2012.

Рис. 2. Эпюры напряжений σ22 ( ) и σ33 ( ) по сечению ОФ

Fig. 2. Stress plots σ22 ( ) and σ33 ( ) along SM section
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 Результаты решения задачи

Геометрические параметры: S = 5 мм; R = 20 мм; 
h = 50 мм.

Временные интервалы Δτn : 0,01, 0,02, 0,03, 0,04, 
0,05, 0,1, 0,2, 0,3, 0,4, 0,5, 2, 5, 5, 5, 3, 3, 5, 5, 5, 5 с.

Приняты следующие физические параметры раз­
ливаемой стали при θ > 1000 °C (  = 1550 °С) [27]:

G = 1000 кг/мм2; α = 12·10–6 град–1; 

λ = 0,0298 Вт/(мм·°C); 

L = 270·103 Дж/кг (скрытая теплота плавления); 

C = 444 Дж/(кг·°C); γ = 7,80·10–6 кг/мм3; θк = 1450 °C.

Физические свойства керамической формы:

G = 2960 кг/мм2; α = 0,51·10–6 град–1; 

λ = 0,000812 Вт/(мм·°C); 

C = 840 Дж/(кг·°C); γ = 2,0·10–6 кг/мм3.

Размеры выточек: ai = 1×2 мм, bi = 1×3 мм.
Расчет по приведенному выше алгоритму показал 

следующие значения: F = 5; ai = 2; bi = 3; геометрическое 
местоположение выточек (ai , bi ) и температуры в сече-

нии (x2 = 0) показаны на рис. 3. Полученные результаты 
по напряжениям σ33 , σ22 приведены на рис. 4.

Видим, что все максимальные значения напряжений 
σ33 (по модулю) и растягивающие напряжения σ22 отве-
чают заданным ограничениям (1), хотя и очень близки 
в некоторых сечениях к граничным величинам.

 Выводы

Поставлена и решена осесимметричная задача по 
оптимизации процесса охлаждения стальной отливки 
в керамической форме, имеющей цилиндрический и сфе-
рический участки и температурные кольцевые вырезы.

Показана эффективность нанесения на литейную 
форму кольцевых выточек на наружную и внутреннюю 
поверхности, соприкасающиеся с охлажденным метал-
лом. 

Полученные результаты могут быть полезны при 
исследованиях других технологических процессов, 
проведении прочностных расчетов и решении оптими-
зационных задач.
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Аннотация. В статье решается задача определения термоупругих напряжений в калиброванных бойках установки совмещенного литья 

и деформации при получении стальных полых заготовок с использованием разработанной авторами методики расчета. Авторы обосно-
вывают актуальность определения термоупругих напряжений в калиброванных бойках при обжатии стенки полой заготовки и на холо-
стом ходу при охлаждении бойков водой и представляют геометрию бойка для получения полой заготовки за один проход. Представ-
лены исходные данные для расчета термоупругих напряжений в калиброванных бойках установки совмещенного литья и деформации 
при получении полых заготовок и температурные граничные условия для их расчета. Для определения температуры бойка приво-
дятся граничные условия и значения теплового потока и эффективного коэффициента теплоотдачи. Результатом расчета термоупругих 
напряжений в четырех сечениях являются характерные линии и точки, расположенные на контактной поверхности бойка и в прикон-
тактном слое на глубине 5 мм от рабочей поверхности. Для расчета термоупругих напряжений в калиброванных бойках с использованием 
метода конечных элементов с применением пакета ANSYS приводятся размеры сетки конечных элементов. Авторы определили величины 
и закономерности распределения термоупругих напряжений в калиброванном бойке при обжатии стенки полой заготовки и на холостом 
ходу при получении за один проход такой заготовки на установке совмещенного литья и деформации. На основании расчетных значений 
температуры и величины максимальных сжимающих термоупругих напряжений на контактной поверхности в качестве материала для 
изготовления бойков предложено использовать трубную заготовку. 

Ключевые слова: установка, калиброванные бойки, литье, деформация, кристаллизатор, полая заготовка, температурное поле, термоупругие 
напряжения, конечный элемент
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Abstract. The article solves the problem of determining thermoelastic stresses in calibrated strikers in a unit of combined casting and deformation 

during production of hollow steel billets using the calculation methodology developed by the authors. The authors substantiate the relevance 
of determining thermoelastic stresses in insulated strikers when compressing the wall of a hollow billet and at idle run when cooling the strikers 
with water, and describe the striker geometry to produce a hollow billet in one pass. The paper considers the initial data and temperature boundary 
conditions for calculating the temperature field of the striker during production of hollow billets in a unit of combined casting and deformation. 
The boundary conditions are given to determine the striker temperature as well as the values of heat flow and effective heat transfer coefficient. 
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 Введение

Основными и наиболее нагруженными элементами 
установки совмещенного литья и деформации явля-
ются бойки [1; 2], которые во время рабочего хода одно­
временно обжимают стенку стальной полой оболочки 
и перемещают ее по направлению литья. При этом 
во время рабочего хода в бойках возникают суммар-
ные напряжения от усилия обжатия и температурной 
нагрузки  [3 – 5]. Таким образом, актуальной задачей 
является обоснование выбора материала бойков, обес-
печивающего способность противостоять циклическим 
нагрузкам при воздействии механических и термоупру-
гих напряжений [6 – 8]. 

Для расчета напряженного состояния бойка уста-
новки сначала определено его температурное поле на 
основе решения уравнения нестационарной теплопро-
водности с соответствующими начальными и гранич-
ными условиями [9 – 11]. 

Наружный и внутренний диаметры полой заготовки 
из стали 09Г2С составляют 100 и 60 мм. Угловая ско-
рость эксцентриковых валов принята равной 40 мин–1. 
При такой скорости время контакта бойка со стенкой 
полой заготовки при рабочем ходе составляет 0,375 с, 
а время паузы – 1,125 с. Температура полой заготовки в 
зоне входа в бойки равна 1200 °С [12 – 14]. 

Геометрия бойка с размерами приведена в работе [9]. 
Итерационными расчетами установлено, что для обес-
печения температуры на контактной поверхности бойка 
на уровне 350 °С при значении коэффициента тепло-
отдачи 2000 Вт/(м2·К) величина плотности теплового 
потока составляет 4,6 МВт/м2 [15].

Установлено, что при воздействии теплового потока 
во время обжатия бойками стенки полой заготовки тем-
пература на контактной поверхности бойка находится 
в диапазоне 370 – 451 °С. Затем на холостом ходу при 
охлаждении бойков водой температура контактной 
поверхности бойка снижается и находится в диапазоне 
289 – 370 °С.

По полученным температурным полям методом 
конечных элементов в пакете ΑΝSYS  [16] опреде-
лены термоупругие напряжения в бойках установки 
(использованы элементы методик расчетов, изложен-
ные в работах [16 – 18]). Размеры конечного элемента в 

зонах очага деформации и калибрующих участков бой-
ков приняты равными 1 мм. В силу симметрии расчет 
выполнялся для половины бойка, показанного на рис. 1 
в работе [9]. Результаты расчета радиальных (SR), тан-
генциальных (Sθ), осевых (SZ) и эквивалентных (SEQV) 
термоупругих напряжений приведены только для 
характерных линий XZ_L2_S2, XYZ_L2_S2 и R_L2_S2 
и  точек сечения 2, связанных с контактной поверхно-
стью бойка (рис. 1). 

В таблице приведены значения термоупругих напря-
жений в точках характерных линий сечения  2 от воз-
действия на боек теплового потока (ТР) и охлаждения 
водой (ОХЛ).

На рис. 2 показаны закономерности распределения 
термоупругих напряжений в бойках по характерной 
линии R_L2_S2. 

Рассмотрим распределение термоупругих напря-
жений в бойках по характерным линиям сечения  2 
(рис. 1), где возникают наибольшие сжимающие 
напряжения при обжатии стенки стальной полой 
заготовки. Так, в точке 1_S2 линии XZ_L2_S2, кото-
рая проходит по оси симметрии калибра бойков, на 

The  results of calculating the temperature fields are performed in four sections and are presented for characteristic lines and points located 
on the striker contact surface and in the contact layer at a depth of 5 mm from the working surface. Dimensions of the finite element grid are given 
to calculate thermoelastic stresses in calibrated strikers using the finite element method with ANSYS package. The authors determined the magni-
tudes and patterns of distribution of thermoelastic stresses in a calibrated striker when compressing the wall of a hollow billet and at idle run when 
such a billet is produced in one pass in a unit of combined casting and deformation. Based on the calculated temperature values and the magnitude 
of the maximum compressive thermoelastic stresses on the contact surface of the strikers, it is proposed to use a pipe billet as a material for making 
strikers. 

Keywords: unit, calibrated striker, casting, deformation, mold, hollow billet, temperature field, thermoelastic stresses, finite element

For citation: Lekhov O.S., Bilalov D.Kh. Calculation of temperature and thermoelastic stresses in strikers during production of hollow steel billets in 
a unit of combined casting and deformation. Part 2. Izvestiya. Ferrous Metallurgy. 2025;68(6):621–625.
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Рис. 1. Положение точек и линий в сечении 2

Fig. 1. Position of points and lines in section 2
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контактной поверхности имеют место максималь-
ные сжимающие осевые напряжения SZ величиной 
–703 МПа (рис. 2, таблица). 

На холостом ходу при охлаждении бойков водой 
на контактной поверхности бойков в точке 1_S2 сжи-
мающие термоупругие напряжения Sθ и SR имеют зна-
чительно меньшие величины и соответственно равны 
–58 и –191 МПа (рис. 2, таблица).

Следует отметить, что по линии XYZ_L2_S2 сжима-
ющие термоупругие напряжения Sθ и SZ на контактной 
поверхности бойков при обжатии стенки полой заго-
товки достаточно высоки и в точке 4_S2 они соответст-
венно равны –381 и –652 МПа (рис. 2, таблица).

На холостом ходу на контактной поверхности бойка 
в точке 4_S2 тангенциальные напряжения Sθ (растяги-
вающие) с максимальной величиной 148 МПа, а осевые 
напряжения SZ (сжимающие) величиной –142 МПа. 

Однако по толщине бойка осевые напряжения сначала 
возрастают до значения –312 МПа, затем уменьшаются, 
меняют знак и становятся растягивающими с наиболь-
шей величиной 141 МПа (см. таблицу).

Рассмотрим распределение термоупругих напряже-
ний по радиусу контактной поверхности бойков (линия 
R_L2_S2, рис. 1).

При обжатии стенки полой заготовки в точке 1_S2 
контактной поверхности бойка термоупругие напряже-
ния Sθ и SZ сжимающие величиной –589 и –703 МПа 
соответственно, затем по радиусу они уменьшаются 
и в точке 4_S2 становятся равными –381 и –652 МПа, 
а в точке 7_S2 соответственно –59 и –63 МПа (рис. 2, 
таблица).

На холостом ходу в точке 1_S2 контактной поверхно-
сти бойка возникают сжимающие термоупругие напряже-
ния Sθ и SZ соответственно величиной –58 и –191 МПа, 

Значения радиальных, тангенциальных, осевых и эквивалентных напряжений в точках линий сечения 2 
от воздействия на боек теплового потока (ТP) и охлаждения водой (ОХЛ)

Values of radial, tangential, axial and equivalent stresses at points of section 2 lines 
due to the effect of heat flow (TP) and cooling with water (ОХЛ) on the striker

Точка
Напряжение, МПа

SR Sθ SZ SEQV SR Sθ SZ SEQV
В конце паузы (ОХЛ) В конце контакта (ТР)

1_S2 –9 –58 –191 178 –39 –589 –703 671
2_S2 –27 –243 –361 317 –33 –218 –348 297
3_S2 –56 –114 –62 56 –38 –113 –42 61
4_S2 –4 148 –142 258 –34 –381 –652 592
5_S2 –13 –91 –312 289 –18 –58 –295 278
6_S2 –542 –454 141 459 –561 –470 130 459
7_S2 21 25 341 342 –19 –59 –63 71
8_S2 53 –1 355 340 –32 –1 340 372
9_S2 0 1 857 856 0 1 859 858

Рис. 2. Характер термоупругих напряжений вдоль линии R_L2_S2:
а – от воздействия на боек теплового потока (ТР) (в конце контакта); 

б – от охлаждения водой (ОХЛ) (в конце паузы)

Fig. 2. Nature of thermoelastic stresses along the R_L2_S2 line: 
a – due the effect of heat flow (TP) on the striker (at the end of the contact); 
б – due to the effect of cooling with water (OХЛ) (at the end of the pause)
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затем они по радиусу контактной поверхности бойка в 
точке 7_S2 становятся растягивающими соответственно 
величиной 25 и 341 МПа (рис. 1, таблица). 

В результате исследования установлено, что тем-
пература контактной поверхности бойков при обжа-
тии стенки стальной полой заготовки может достигать 
451 °С. При этой температуре величина сжимающих 
термоупругих напряжений на контактной поверхности 
бойков достигает 703 МПа. 

Расчетные значения термоупругих напряжений 
хорошо коррелируют с результатами, полученными при 
выполнении аналогичных исследований с использова-
нием программной системы анализа QForm [19].

С учетом вышеизложенного бойки установки сов-
мещенного литья и деформации для получения сталь-
ных полых заготовок целесообразно изготавливать 
из стали 4Х4ВМФС. Это штамповая сталь с повы-
шенными стойкостью к образованию трещин разгара 
и износостойкостью. Условный предел текучести стали 
при температуре 500 °С составляет 1309 МПа, что зна-
чительно превышает величину максимальных термо-
упругих напряжений от температурной нагрузки  [20]. 
Сталь применяется, в том числе, для изготовления 
инструмента высокоскоростной машинной штамповки 
и высадки на горизонтально-ковочных машинах.

 Выводы

Разработана методика расчета термоупругих напря-
жений в калиброванных бойках установки совмещен-
ного литья и деформации при получении стальных 
полых трубных заготовок. Определены величины и зако-
номерности распределения термоупругих напряжений 
в трех сечениях калиброванного бойка при получении 
стальных полых заготовок на установке совмещенного 
литья и деформации. Установлено, что максимальная 
величина сжимающих термоупругих напряжений на 
контактной поверхности бойков достигает 703 МПа. 
Предложено бойки установки совмещенного литья и 
деформации для получения стальных полых заготовок 
изготавливать из стали 4Х4ВМФС, предел текучести 
которой при температуре 500 °С составляет 1309 МПа.

 Список литературы / References

1.	 Лыков А.В. Теория теплопроводности. Москва: Высшая 
школа; 1967:600.

2.	 Matteo D. Wicon EVO – a preview of Danieli’s easy-to-
use rolling process simulation software for wire rod and bar 
mills. In: Proceedings of the Rolling12, Trieste, Italy, 25–28 
October 2022. Trieste, Italy; 2022.

3.	 Хлопонин В.Н., Косырева М.В., Косяк А.С. Влияние сис-
темы охлаждения на тепловые условия работы поверх-
ностного слоя валка. В кн.: Труды МИСиС. Вып. 100. 
Москва: изд. МИСиС; 1977:90–93.

4.	 Кушнер В.С., Верещака А.С., Схиртладзе А.Г., Нег-
ров Д.А. Технологические процессы в машиностроении 

Ч. II. Обработка металлов давлением и сварочное произ-
водство. Омск: изд. ОмГТУ; 2005:200.

5.	 Лехов О.С., Билалов Д.Х. Технологические возможности 
установок совмещенных процессов непрерывного литья 
и деформации для производства металлопродукции. 
Производство проката. 2016;(7):24–26.

	 Lekhov O.S., Bilalov D.Kh. Technological capabilities of 
installations for combined continuous casting and deforma-
tion processes for the production of metal products. Proiz­
vodstvo prokata. 2016;(7):24–26. (In Russ.).

6.	 Лехов О.С. Исследование напряженно-деформирован-
ного состояния системы валки – полоса при прокатке 
широкополочной балки в клетях универсально-балоч-
ного стана. Сообщение 2. Известия вузов. Черная метал­
лургия. 2014;57(12):15–19.

	 https://doi.org/10.17073/0368-0797-2014-12-15-19

	 Lekhov O.S. Study of stress-strain state of rolls-band system 
at rolling of broad-flanged beam in stands of universal beam 
mill. Report 2. Izvestiya. Ferrous Metallurgy. 2014;57(12): 
15–19. (In Russ.).

	 https://doi.org/10.17073/0368-0797-2014-12-15-19
7.	 Боли Б., Уэйнер Дж. Теория температурных напряжений. 

Москва: Мир; 1976:349.
8.	 Kazakov A.L., Spevak L.F. Numeral and analytical studies 

of nonlinear parabolic equation with boundary conditions 
of a special form. Applied Mathematical Modelling. 2013; 
37(10-13):6918–6928.

	 https://doi.org/10.1016/j.apm.2013.02.026
9.	 Лехов О.С., Билалов Д.Х. Расчет температуры и термо-

упругих напряжений в бойках при получении стальных 
полых заготовок на установке совмещенного литья и 
деформации. Часть 1. Известия вузов. Черная металлур­
гия. 2025;68(4):366–371.

	 https://doi.org/10.17073/0368-0797-2025-4-366-371

	 Lekhov O.S., Bilalov D.Kh. Calculation of temperature and 
thermoelastic stresses in strikers during production of hollow 
steel billets in a unit of combined casting and deformation. 
Part 1. Izvestiya. Ferrous Metallurgy. 2025;68(4):366–371. 
https://doi.org/10.17073/0368-0797-2025-4-366-371

10.	 Matsumia Т., Nakamura Y. Mathematical model of slab bulg-
ing during continuous casting. In: Applied Mathematical, 
and Physical Models in Iron and Steel Industry Proceedings 
of the 3rd Process. Tech. Conf., Pittsburgh, Pa, 28-31 March 
1982. New York; 1982:264–270.

11.	 Karrech A., Seibi A. Analytical model of the expansion in of 
tubes under tension. Journal of Materials Processing Tech­
nology. 2010;210:336–362.

12.	 Stebunov S., Biba N., Vlasov A., Maximov A. Thermally 
and Mechanically Coupled Simulation of Metal Forming 
Processes. In: Proceedings of the 10th Int. Conf. on Techno­
logy of Plasticity, Aachen, Germany, 25–30 September 2011. 
Aachen, Germany; 2011. 

13.	 Marciniak Z., Duncan J.L., Hu S.J. Mechanics of Sheet Metal 
Forming. Butterworth-Heinemann Elsevier Ltd.: Oxford; 
2002:228. 

14.	 Park C.Y., Yang D.Y. A study of void crushing in large forg-
ings: II. Estimation of bonding efficiency by finite-element 
analysis. Journal of Materials Processing Technology. 
1997;72(1):32-41.

15.	 Лехов О.С., Михалев А.В., Шевелев М.М. Напряжения в 
системе бойки – полоса при получении листов из стали 

https://doi.org/10.17073/0368-0797-2014-12-15-19
https://doi.org/10.17073/0368-0797-2014-12-15-19
https://doi.org/10.1016/j.apm.2013.02.026
https://doi.org/10.17073/0368-0797-2025-4-366-371
https://doi.org/10.17073/0368-0797-2025-4-366-371%20
https://archive.org/search.php?query=creator%3A%22Marciniak%2C+Z%22
https://archive.org/search.php?query=creator%3A%22Duncan%2C+J.+L%22
https://archive.org/search.php?query=creator%3A%22Hu%2C+S.+J%22


Izvestiya. Ferrous Metallurgy. 2025;68(6):621–625.
Lekhov O.S., Bilalov D.Kh. Calculation of temperature and thermoelastic stresses in strikers during production of hollow steel billets ...

625

на установке непрерывного литья и деформации. Екате-
ринбург: изд. УМЦ УПИ; 2018:125.

16.	 ANSYS. Structural Analysis Guide. Rel. 15.0. 
17.	 Takashima Y., Yanagimoto I. Finite element analysis of 

flange spread behavior in H-beam universal rolling. Steel 
Research International. 2011;82(10):1240–1247.

	 https://doi.org/10.1002/srin.201100078
18.	 Jansson N. Optimized sparse matrix assembly in finite ele-

ment solvers with one-sided communication. In: High Per­
formance Computing for Computational Sience – VECPAR 
2012. Berlin, Heidelberg: Springer; 2013:128–139. 

19.	 Стебунов С.А., Мальцев П.А., Гладков Ю.А., Белу-
гин  В.С., Алимов И.С. Моделирование и проектирова-

ние сортовой прокатки в условиях промышленного про-
изводства с применением QForm и Калибер. В сб.: Труды 
XIV конгресса прокатчиков. Череповец, 16–18 апреля 
2024. Череповец; 2024:112–114.

20.	 Буланов Л.В., Карлинский С.Е., Волегова В.Е. Долго-
вечность роликов МНЛЗ при наружном и внутреннем 
охлаждении. В кн.: Надежность крупных машин. Сб. 
науч. тр. НИИтяжмаш. Свердловск: изд. НИИтяжмаш; 
1990:126–132.

	 Bulanov L.V., Karlinskii S.E., Volegova V.E. Durability of 
casters for external and internal cooling. In: Reliability of 
Large Machines. Collection of Sci. Papers of NIItyazhmash. 
Sverdlovsk: NIItyazhmash; 1990:126–132. (In Russ.).

Олег Степанович Лехов, д.т.н., профессор кафедры инжиниринга 
и профессионального обучения в машиностроении и металлургии, 
Российский государственный профессионально-педагогический 
университет
E-mail:  MXLehov38@yandex.ru 

Дамир Харасович Билалов, доцент кафедры инжиниринга и 
профессионального обучения в машиностроении и металлургии, 
Российский государственный профессионально-педагогический 
университет
ORCID: 0000-0002-4336-5339
E-mail:  master_ddd@mail.ru 

Oleg S. Lekhov, Dr. Sci. (Eng.), Prof. of the Chair of Engineering and 
Vocational Training in Machinery and Metallurgy, Russian State Profes-
sional Pedagogical University
E-mail:  MXLehov38@yandex.ru 

Damir Kh. Bilalov, Assist. Prof. of the Chair of Engineering and Voca-
tional Training in Machinery and Metallurgy, Russian State Profes-
sional Pedagogical University
ORCID: 0000-0002-4336-5339
E-mail:  master_ddd@mail.ru 

Сведения об авторах Information about the Authors

Поступила в редакцию 15.08.2025
После доработки 25.09.2025

Принята к публикации 10.10.2025

Received 15.08.2025
Revised 25.09.2025

Accepted 10.10.2025

https://doi.org/10.1002/srin.201100078
mailto:MXLehov38@yandex.ru
https://orcid.org/0000-0002-4336-5339
mailto:master_ddd@mail.ru
mailto:MXLehov38@yandex.ru
https://orcid.org/0000-0002-4336-5339
mailto:master_ddd@mail.ru


Известия вузов. Черная металлургия. 2025;68(6):626–635.
Чжан Ц., Козлов В.Н. и др. Анализ процесса обработки заготовки из мартенситной нержавеющей стали 40X13 ...

626

УДК 621.791.754.3
DOI 10.17073/0368-0797-2025-6-626-635

  cinzhun1@tpu.ru
Аннотация. Авторы исследовали микроструктуру и механические свойства образцов, полученных методом проволочного электронно-луче-

вого аддитивного производства (WEBAM), и их обрабатываемость по силам фрезерования с использованием метода Тагучи. В образцах 
в различных направлениях наблюдались зерна предыдущего аустенита и отожженный мартенсит. Зерна предыдущего аустенита растут 
вдоль направления наплавки и демонстрируют выраженную ориентацию. На боковой поверхности образца зерна предыдущего аустенита 
являются столбчатыми, их твердость составляет примерно 505 HV0,1 . На верхней поверхности образца зерна предыдущего аустенита 
являются изометрическими, их твердость составляет примерно 539 HV0,1 . В разных частях образца степень превращения в мартенсит 
различается. В части, близкой к боковой поверхности, мартенсит более мелкий и предыдущие аустенитные межзеренные границы не 
наблюдаются. Его твердость составляет примерно 514 HV0,1 . В нижней части образца, вследствие множественных термоциклов, проис-
ходит разложение мартенсита, при этом его твердость низкая и составляет примерно 480 HV0,1 . В верхней части образца наблюдаются 
мартенсит и предыдущие аустенитные межзеренные границы, твердость составляет примерно 513 HV0,1 . Из-за высокой твердости 
образца при попутном фрезеровании более сильный удар режущей кромки о образец приводит к увеличению силы резания. Вследствие 
низкой пластичности образца при встречном фрезеровании уменьшение объема материала, вдавливаемого в заднюю поверхность инстру-
мента, приводит к снижению силы резания. При увеличении скорости подачи на зуб деформация материала увеличивается, температура 
повышается, что приводит к снижению прочности материала и, соответственно, замедляет рост силы резания. 

Ключевые слова: проволочное электронно-лучевое аддитивное производство, микроструктура, твердость, обрабатываемость, мартенситная 
нержавеющая сталь, метод Тагучи
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 Введение

В последние годы проволочное электронно-луче-
вое аддитивное производство (Wire Electron Beam 
Additive Manufacturing  – WEBAM) активно разви-
вается благодаря высокой (до 2500 см3/ч) скорости 
наплавки и  отличным свойствам получаемых мате-
риалов (высокая прочность и устойчивость к устало-
сти)  [1 – 6]. Кроме того, технология WEBAM обес-
печивает гибкость производства (диаметр проволоки 
от 0,5 мм) и  позволяет синтезировать материалы 
с  заданным содержанием фаз (никель-алюминиевые 
сплавы) [7].

Однако в отличие от традиционных литья и ковки, 
тепловые процессы в аддитивном производстве более 
сложные, что приводит к неопределенности механи-
ческих свойств напечатанных деталей. Исследования 
нержавеющей стали 10X12N10T показали, что высокая 
плотность дислокаций и межметаллических соедине-
ний в межслойных границах приводят к повышению 
прочности деталей [8]. Изучение условий теплоотвода 
при наплавке стали 308LSi показало, что при исполь-
зовании меди в качестве охлаждающей среды твер-
дость на 5 % выше, чем при использовании воздуха, 
а твердость верхней части образца на 8 % выше, чем 
нижней  [9]. При изготовлении тонкостенных деталей 
формируется столбчатая кристаллическая структура, 

что приводит к анизотропии механических свойств 
материала: разница в прочности между продольным 
и поперечным направлениями достигает 70 МПа  [10]. 
Кроме того, из-за высокого тепловложения качество 
поверхности печатных деталей, изготавливаемых по 
технологии WEBAM, снижает качество поверхностей 
при традиционных методах обработки, таких как фре-
зерование и точение [11; 12]. Мартенситная нержавею-
щая сталь 40X13 (аналог AISI 420) получила широкое 
распространение в производстве крупных деталей со 
сложной формой благодаря относительно низкой стои­
мости, умеренной коррозионной стойкости, а также 
высокой прочности. Однако ее высокая твердость сни-
жает обрабатываемость и приводит к интенсивному 
износу инструмента  [13]. Кроме того, из-за высокой 
чувствительности мартенситной стали к изменению 
температуры, а также направленности температурного 
градиента в процессе наплавки, образцы демонстри-
руют анизотропию микроструктуры и механических 
свойств [14; 15]. Это еще больше увеличивает неопре-
деленность при обработке мартенситной стали.

Применяемый в настоящей работе метод Тагучи 
(Taguchi Method) является методом оптимизации экс-
периментов, который вводит концепцию соотношения 
сигнал/шум (Signal-to-Noise Ratio, SNR) и ортогональ-
ные массивы (Orthogonal Arrays) для определения 
оптимальной комбинации параметров [16 – 20]. 
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Целью настоящей работы являлось проведение 
анализа микроструктуры и микротвердости образцов 
из мартенситной нержавеющей стали 40Х13, наплав-
ленных методом WEBAM, в различных направлениях 
и областях, а также исследование их обрабатываемости 
с использованием метода Тагучи.

 Методика эксперимента

Образцы наплавляли на разработанном и изготов-
ленном в Томском политехническом университете 
оборудовании для проволочного электронно-лучевого 
аддитивного производства (печати). В качестве при-
садочного материала использовалась проволока диа-
метром 1,2 мм из мартенситной нержавеющей стали 
40X13 следующего состава, мас. %: 0,41 C, 13,2 Cr, 
0,53 Si, 0,51 Ni, 0,49 Mn, 0,017 S, 0,021 P, остальное  – 
железо. Подложка была изготовлена из того же мате-
риала (стали 40X13). Размеры образцов составляли 
70×15×14 мм (длина×ширина×высота). Параметры 
печати: ускоряющее напряжение 40 кВ, ускоряющий 
ток 21 мА, диаметр сканирующего пучка 3 – 5 мм, ско-
рость подачи проволоки 1050 мм/мин, угол подачи про-
волоки 45°. Печать осуществлялась в вакууме с давле-
нием 5·10–3 Па. 

Исследования микроструктуры проводились с  ис­
пользованием металлографического микроскопа 
BIOMED MMP-1 и методом сканирующей электронной 
микроскопии на растровом микроскопе JEOL JSM 6000. 
Измерение микротвердости образцов было проведено с 
использованием твердомера EMCO-TEST DuraScan-10. 
Время удержания нагрузки составляло 10 с.

Обрабатываемость образца оценивалась по силам 
фрезерования. Эксперименты по обработке выпол-
нялись на станке с ЧПУ EMCO CONCEPT Mill  155. 
Силы измерялись с использованием динамометра 
Kistler 9257 V (Швейцария). В программном обеспече-
нии динамометра, предназначенного для измерения сил 
при токарной обработке, отображаются составляющие 
силы Fx , Fy и Fz , соответственно равные силам фрезеро-
вания Ph , Pv и Px (рис. 1). Для обработки использовалась 
концевая фреза диаметром 8 мм с четырьмя зубьями 
производства компании GESAC. Угол подъема винтовой 
канавки (ω) фрезы составляет 35°, передний (γ) и зад-
ний (α) углы соответственно 7° и 5°. Основной материал 
фрезы – твердый сплав ВК8 (92 % карбида вольфрама 
и 8 % кобальта как связующего вещества). На поверхно-
сти фрезы износостойкое покрытие AlCrSiN.

Экспериментальные уровни факторов представлены 
в табл. 1.

Таблица 1. Экспериментальные уровни факторов

Table 1. Experimental levels of the factors

Фактор
Уровень

1 2 3

А: схема фрезерования Попутное 
фрезерование (П)

Встречное 
фрезерование (В)

В: скорость минутной подачи sм , мм/мин 56 28 5,6
С: частота вращения фрезы n, об/мин 2000 1000 500

Рис. 1. Внешний вид (а) и модель (б) установки динамометра, фрезы и образца

Fig. 1. Appearance (a) and model (б) of the dynamometer, milling cutter and sample installation
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Для определения минимальной силы фрезерования 
использовано отношение сигнал/шум S/N(η):

	              	 (1)

где Pi – значение силы, измеренное в процессе i-го про-
хода фрезерования. 

Формула для расчета средней силы Pср при фрезеро-
вании имеет вид:

		             	 (2)

где x – количество повторений эксперимента. 

 Результаты эксперимента и их обсуждение

 Анализ микроструктуры и механических свойств
 

образца в различных направлениях

На рис. 2 направление оси OZ соответствует направ-
лению построения наплавки, оси OY  – направлению 
вдоль сварного валика, а оси OX – поперечному направ-
лению относительно сварного валика.

При малом увеличении на плоскостях XOZ и YOZ 
можно наблюдать зерна аустенита до мартенситного 
превращения (предыдущие аустенитные зерна), кото-
рые имеют столбчатую форму с длинной осью, совпа-
дающей по направлению с осью OZ. Это связано с тем, 
что в процессе наплавки нижние слои подвергаются 
многократным тепловым циклам и накапливают тепло, 
что приводит к формированию основного потока тепла 
в противоположном направлении наплавки (против 
направления оси OZ) и явной преимущественной ори-
ентации роста предыдущих аустенитных зерен вдоль 
оси OZ. Напротив, на плоскости XOY зерна демонстри-

руют равноосную форму. Это объясняется тем, что 
высокая скорость наплавки и низкое тепловложение 
подавляют рост зерен в направлении OY, выравнивая 
условия теплоотвода в направлениях OX и OY. Это спо-
собствует тому, что скорость роста зерен становится 
одинаковой в направлениях OX и OY и приводит к фор-
мированию равноосных зерен. Кроме того, степень 
коррозии отдельных предыдущих аустенитных зерен 
практически одинакова, однако между разными зер-
нами степень коррозии разная. Это может быть связано 
с различными степенью и формой мартенситных пре­
вращений, вызванных сегрегацией элементов при высо-
ких скоростях охлаждения в процессе наплавки [15].

На рис. 2, б отчетливо видно, что внутри предыду-
щих аустенитных зерен посредством бездиффузион-
ного фазового превращения сформировалось большое 
количество игольчатых или пластинчатых структур 
мартенсита.

Мартенсит внутри предыдущих аустенитных зерен 
распределен в виде сетчатого переплетения. В раз-
личных аустенитных зернах ориентация мартенсита 
демонстрирует существенные различия. Кроме того, на 
границах предыдущих аустенитных зерен наблюдается 
явное трансгранулярное явление, что может быть свя-
зано с локальной концентрацией напряжений или гра-
диентами энергии. В плоскостях YOZ и XOZ размеры 
предыдущих аустенитных зерен практически одина-
ковы, что дополнительно подтверждает схожесть тем-
пературных градиентов вдоль осей XO и OY. В плос­
кости XOY наличие предыдущих аустенитных зерен 
меньших размеров приводит к тому, что мартенсит ста-
новится более плотным, а средняя длина таких вклю-
чений – меньше. Такая разница может быть объяснена 
более быстрым охлаждением вдоль осей OX и OY или 
образованием более выраженных градиентов состава 
в этой плоскости из-за элементной сегрегации, что 

Рис. 2. Микроструктура образцов, наплавленных методом WEBAM, в разных плоскостях при малом (а) и большом (б) увеличении

Fig. 2. Microstructure of the samples deposited by WEBAM in different planes at low (а) and high (б) magnification
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подавляет укрупнение зерен [21]. Это также приводит 
к меньшей частоте транскристаллических явлений на 
границах зерен в плоскости XOY.

Изображение микроструктуры, полученное в резуль-
тате сканирующей электронной микроскопии образца 
в плоскости XOZ, представлено на рис. 3. Можно четко 
наблюдать пластинчатый мартенсит и карбиды. Изме-
ренная твердость образца в плоскости XOZ состав-
ляет 504,67 HV0,1 , что значительно ниже твердости 
закаленного мартенсита 750 HV [21]. Однако толщина 
слоя пластинчатого мартенсита сравнительно невелика 
и  составляет 1,23 ± 0,56 мкм. Причина такой разницы 
в твердости заключается в том, что образец подвергся 
нескольким термическим циклам, в результате чего 
мартенсит проявил термоактивацию и частично рас-
пался, что привело к увеличению содержания остаточ-
ного аустенита. Во время наплавления первого слоя 
материала, благодаря высокой скорости охлаждения, 
аустенитная фаза быстро превращается в закаленную 
мартенситную, достигая максимального содержания 
мартенсита. Однако при наплавлении второго или тре-
тьего слоя первый слой остается в зоне термического 
влияния, что приводит к диффузии углерода на грани-
цах между мартенситом и мартенситом либо мартен-
ситом и остаточным аустенитом. В результате часть 
мартенсита превращается в аустенит. Но атомы хрома 
затрудняют диффузию углерода, ограничивая разложе-
ние мартенсита и вызывая лишь его частичное разложе-
ние. Поэтому, несмотря на множественные термичес­
кие циклы, твердость материала остается значительно 
выше, чем у аустенитной стали [8].

Твердость образца в разных направлениях показана 
на рис. 4. Как упоминалось ранее, из-за более высокой 
скорости охлаждения образца вдоль направлений OX 
и  OY размер предыдущих аустенитных зерен в плос­

кости XOY меньше, а степень превращения мартенсита 
выше, что способствует формированию в плоскости 
XOY более непрерывной и однородной сетчатой струк-
туры, которая эффективно препятствует движению 
дислокаций, тем самым повышая твердость материала 
до 539,73 HV0,1 . Напротив, скорость охлаждения вдоль 
направления OZ ниже, а градиенты температуры вдоль 
направлений OX и OY схожи, что обусловливает мень-
шую степень превращения мартенсита в плоскостях 
XOZ и YOZ. Это облегчает движение и размножение 
дислокаций на этих плоскостях, вызывая пластическую 
деформацию материала. В результате твердость на этих 
двух плоскостях оказывается приблизительно одинако-
вой и составляет 505,14 и 504,67 HV0,1 соответственно.

 Анализ микроструктуры в различных
 

частях образца

Изображения микроструктуры в различных частях 
образца показаны на рис. 5. В части, близкой к боко-
вой поверхности образца (рис. 5, а), предыдущие 
аустенитные межзеренные границы нечеткие, выделив-
шиеся карбидные вкрапления имеют незначительный 
размер,  скопления отпущенного мартенсита мелкие 
и распределены равномерно. Это связано с тем, что 
вблизи боковой поверхности образца условия теплоот-
вода более благоприятны, скорость охлаждения выше, 
что способствует образованию большого количества 
мелких мартенситов. При этом повышенная скорость 
охлаждения также приводит к более выраженному 
трансгранулярному явлению при мартенситном прев-
ращении, в результате чего предыдущие аустенитные 
межзеренные границы становятся нечеткими. В ниж-
ней части образца (рис. 5, б) четко наблюдаются преды-

Рис. 3. Микроструктура образца, наплавленного 
методом WEBAM в плоскости XOZ, наблюдаемая 

с помощью сканирующего электронного микроскопа

Fig. 3. Microstructure of the sample deposited by WEBAM 
in XOZ plane observed using the scanning electron microscope

Рис. 4. Микротвердость образца, наплавленного методом WEBAM, 
в разных направлениях

Fig. 4. Microhardness of the sample deposited by WEBAM  
in different directions
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дущие аустенитные межзеренные границы и крупные 
выделившиеся карбидные участки, а также небольшое 
количество мартенсита. Это связано с тем, что ско-
рость охлаждения в нижней части образца ниже, чем в 
области, близкой к боковой поверхности, что приводит 
к менее выраженному проявлению трансгранулярного 
явления, и, соответственно, наблюдаются четкие преды-
дущие аустенитные межзеренные границы. Кроме того, 
поскольку нижняя часть образца в процессе наплавки 
подвергалась относительно большему количеству тер-
мических циклов, количество выделившегося карбида 
и разложившегося мартенсита увеличилось. В верх-
ней части образца (рис. 5, в) наблюдается микрострук-
тура, отличающаяся от нижней части и части, близкой 
к боковой поверхности: предыдущие аустенитные меж-
зеренные границы и мартенсит четко видны, а толщина 
слоя мартенсита больше. Это связано с тем, что верх-
няя часть образца подвергалась меньшему количеству 
термических циклов, что приводит к незначительному 

разложению мартенсита, а его структура четко видна. 
В то же время по сравнению с частью, близкой к боко-
вой поверхности, скорость охлаждения в верхней части 
была ниже, что приводит к образованию более толстого 
слоя мартенсита.

Отпечатки при измерении микротвердости в различ-
ных частях образца представлены на рис. 6. В нижней 
части микротвердость минимальна из-за разложения 
мартенсита. В части, близкой к боковой поверхности, 
микротвердость несколько выше, чем в верхней части 
образца, однако оба значения превышают микротвер-
дость в средней части в плоскости YOZ, показанной на 
рис. 4. Это связано с тем, что в верхней части образца 
содержание мартенсита выше, и в части, близкой к боко-
вой поверхности, размер участков мартенсита меньше, 
что объясняет более высокую твердость. Кроме того, 
вследствие меньшего размера предыдущих аустенит-
ных зерен микротвердость на плоскости XOY выше, 
чем на плоскости YOZ в различных частях.

Рис. 5. Микроструктура образца, наплавленного методом WEBAM, в плоскости YOZ в части, близкой к боковой поверхности (а), 
в нижней части (б) и в верхней части (в)

Fig. 5. Microstructure of the sample deposited by WEBAM in YOZ plane in the part close to the lateral surface (a), in the lower part (б), 
and in the upper part (в)

Рис. 6. Измерение микротвердости образца, наплавленного методом WEBAM, в плоскости YOZ в части,  
близкой к боковой поверхности (а), в нижней части (б) и в верхней части (в)

Fig. 6. Microhardness of the sample deposited by WEBAM in YOZ plane in the part close to the lateral surface (a), in the lower part (б), 
and in the upper part (в)
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 Анализ обрабатываемости по силам
 

фрезерования

С использованием метода Тагучи в настоящей работе 
исследована обрабатываемость наплавленного методом 
WEBAM образца из мартенситной нержавеющей стали 
40X13 при фрезеровании вдоль направления OX на 
поверхности XOZ. На основе расчетов по формулам (1) 
и (2) средние значения экспериментальных результатов 
и соотношение сигнал/шум приведены в табл. 2.

Формула для расчета среднего отношения сигнал/
шум имеет вид:

		      	 (3)

где m – количество комбинаций параметров при одина-
ковом уровне данного фактора [19].

Из табл. 2 и 3 видно, что при попутном фрезеро-
вании сила Ph , действующая вдоль направления ско-
рости подачи, меньше, чем при встречном, а cила Pv , 

действующая перпендикулярно направлению скорости 
подачи, больше, чем при встречном (рис. 7). Причиной 
таких изменений является то, что при обработке новой 
фрезой ведущая тангенциальная сила Pz (вдоль направ-
ления скорости резания v) при встречном фрезерова-
нии направлена почти в направлении скорости подачи, 
а при попутном почти перпендикулярна направле-
нию скорости подачи [14]. Кроме того, из-за высокой 
твердости мартенситной нержавеющей стали ударная 
сила на режущую кромку при попутном фрезеровании 
больше, а низкая пластичность снижает объем матери-
ала, вдавливающегося в заднюю поверхность фрезы 
при встречном фрезеровании, что приводит к умень-
шению силы.

По мере увеличения скорости минутной подачи sм 
толщина среза ai и деформация материала увеличива-
ются, а также повышается температура резания, что 
приводит к увеличению сил Ph и Pv , при этом их рост 
замедляется. Кроме того, повышение температуры реза-
ния может привести к разложению мартенсита, что еще 
больше снизит прочность материала и замедлит рост Ph 

Таблица 2. Cредние значения экспериментальных результатов и отношение сигнал/шум

Table 2. Mean values of experimental results and signal-to-noise ratio

Параметры обработки Cредние значения 
экспериментальных результатов, Н Отношение сигнал/шум S/N, дБ

А: стратегия В: sм , мм/мин С: n, об/мин

Попутное 56 2000 52,11 146,10 22,87 –34,33 –43,29 –27,18
Попутное 28 1000 74,25 159,77 19,87 –37,41 –44,07 –25,96
Попутное 5,6 500 43,09 82,03 18,22 –32,76 –38,28 –25,21
Встречное 56 500 212,12 181,89 26,09 –46,53 –45,19 –28,33
Встречное 28 1000 122,06 115,01 17,45 –41,73 –41,21 –24,84
Встречное 5,6 2000 63,24 22,09 8,25 –36,02 –26,88 –18,35

Рис. 7. Направление сил Ph , Pv , Pz и Py при попутном фрезеровании (а) и при встречном фрезеровании (б)

Fig. 7. Direction of forces Ph , Pv , Pz and Py during climb milling (a) and conventional milling (б)
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и Pv . При уменьшении частоты вращения n происходит 
увеличение скорости подачи на зуб sz , а, значит, и тол-
щины среза a и деформация материала, поэтому силы 
фрезерования Ph и Pv увеличиваются. Согласно данным 
табл. 2, осевая сила Px практически не чувствительна 
к скорости минутной подачи sм и частоте вращения n 
из-за того, что на осевую силу Px почти не влияет тол-
щина среза. Однако из-за изменений температуры осе-
вая сила Px может немного изменяться.

 Выводы

В настоящей работе исследованы микроструктура 
и механические свойства образца в разных направ-
лениях. На боковой плоскости образца наблюдаются 

столбчатые зерна предыдущего аустенита с твердостью 
около 505 HV0,1 , а на верхней плоскости наблюдаются 
равноосные зерна с твердостью 539,73 HV0,1 . Микро-
структура образца больше соответствует отожженному 
мартенситу, где можно наблюдать трансгранулярное 
явление. В связи с множественными термическими 
циклами его микроструктура больше соответствует 
отожженному мартенситу.

Исследованы микроструктура и механические свой-
ства образца в различных частях образца. В части, 
близкой к боковой поверхности, из-за более высо-
кой скорости охлаждения размер мартенсита меньше, 
а твердость в ней выше и составляет 514,2 ± 5,85 HV0,1 . 
В нижней и верхней частях четко наблюдаются преды-
дущие аустенитные межзеренные границы. Поскольку 

Таблица 3. Результаты анализа влияния факторов на отношение сигнал/шум

Table 3. Results of analysis of the factors effects on signal-to-noise ratio

Фактор

Уровень среднего значения 
сигнал/шум  , дБ График фактор – отношение сигнал/шум Ph

1 2 3

А: схема фрезерования –34,83 –41,43 –

В: скорость минутной подачи sм , мм/мин –40,43 –39,57 –34,14

С: частота вращения n, об/мин –35,17 –39,57 –39,65

Фактор

Уровень среднего значения 
сигнал/шум , дБ График фактор – отношение сигнал/шум Pv 
1 2 3

А: схема фрезерования –41,88 –37,76 –

В: скорость минутной подачи sм , мм/мин –40,43 –42,64 –32,58

С: частота вращения n, об/мин –35,08 –42,64 –41,73

Фактор

Уровень среднего значения 
сигнал/шум , дБ График фактор – отношение сигнал/шум Px

1 2 3

А: схема фрезерования –26,11 –37,76 –

В: скорость минутной подачи sм , мм/мин –27,75 –25,40 –32,58

С: частота вращения n, об/мин –22,76 –25,40 –25,77
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нижняя часть образца подвергалась большему коли­
честву термических циклов, мартенсит разложился, что 
привело к снижению твердости до 480,49 ± 8,19 HV0,1 . 
Поскольку верхняя часть образца подвергалась мень-
шему количеству термических циклов и в ней сохрани-
лось значительное количество мартенсита, твердость 
остается высокой 512,80 ± 5,25 HV0,1 . 

На основе метода Тагучи была исследована обраба-
тываемость образца. Из-за высокой твердости образца 
ударное воздействие режущей кромки на обрабаты­
ваемую поверхность при попутном фрезеровании при-
водит к увеличению сил, а из-за низкой пластичности 
образца уменьшение объема материала, вдавливающе-
гося в заднюю поверхность фрезы, при встречном фре-
зеровании приводит к уменьшению сил. Из-за умень-
шения прочности материала, вызванного повышением 
температуры, с увеличением скорости подачи на зуб 
рост сил замедляется.
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Аннотация. Развитие металлургии предусматривает дальнейшее увеличение объемов и совершенствование процессов выплавки стали за 

счет внедрения различных прогрессивных ресурсо- и энергосберегающих технологий. Основные и наиболее универсальные управля-
ющие воздействия, влияющие на ход и технико-экономические показатели процесса, неразрывно связаны с оптимизацией параметров 
технологии. Оптимизация параметров технологического процесса ориентирована на достижение наилучших результатов в области 
производительности, качества продукции и снижения затрат ресурсов. Это достигается посредством регулярного мониторинга и анализа 
ключевых показателей, а также внесения необходимых корректировок в управление процессом. Удачное сочетание указанных факторов 
способствует максимизации производственной эффективности и повышению конкурентоспособности продукции на рынке. Для расчета 
статических режимов процесса целесообразно использование ресурсов математического моделирования и разработки инструментальной 
системы. При создании статической модели расчета электросталеплавильный процесс рассматривали как сложную термодинамическую 
систему, в которую поступают конденсированные и газообразные входные среды, а конечными продуктами являются металл, шлак и газ. 
Расчет статических режимов электросталеплавильного процесса, осуществляемый на основе материального и теплового балансов, бази-
руется на законах сохранения массы и энергии относительно составляющих гетерогенной системы. Решение оптимизационной задачи 
на основе формальных методов предусматривает выбор различных критериев и задание системы ограничений (требования к составу 
металла, диапазоны изменения расходов компонентов шихтовых материалов и параметров состояния системы, соблюдение закона сохра-
нения массы на уровне потоков, веществ и элементов, соблюдение закона сохранения энергии). Особенностью разработанного метода 
математического моделирования и оптимизации электросталеплавильного процесса является системное решение комплекса взаимос-
вязанных оптимизационных задач по определению оптимальных условий протекания процессов в металлургической системе и опти-
мальных режимов реализации технологии электроплавки. 
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Abstract. Development of metallurgy provides for further increase and improvement of steel production volumes through the introduction of various 

advanced resource- and energy-saving technologies. The main and most universal control actions that affect the course and technical-economic indi-
cators of the process are inextricably linked to the optimization of technology parameters which is focused on achieving the best results in the field 
of productivity, product quality and reduction of resource costs. This is achieved through the regular monitoring and analysis of key indicators, as 
well as making necessary adjustments to process management. A successful combination of these factors contributes to maximizing the production 
efficiency and increasing the competitiveness of products on the market. To calculate the process static parameters, it is advisable to use the resources 
of mathematical modeling and development of an instrumental system. When creating a static calculation model, the electric steelmaking process was 
considered as a complex thermodynamic system into which condensed and gaseous input media enter, and the final products are metal, slag and gas. 
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 Введение

В настоящее время Федеральные программы тех-
нического развития металлургии предусматривают 
дальнейшее увеличение объемов и совершенствование 
процессов выплавки стали за счет внедрения различ-
ных прогрессивных ресурсо- и энергосберегающих 
технологий. Одной из главных задач современного 
сталеплавильного производства остается получение 
расплавленного металлического полупродукта с задан-
ными химическим составом и температурой при мини-
мальных затратах материальных и энергетических 
ресурсов [1 ‒ 5]. Основные и наиболее универсальные 
управляющие воздействия, которые влияют на ход 
и технико-экономические показатели процесса, как пра-
вило, неразрывно связаны с оптимизацией параметров 
технологии [6 ‒ 8]. При этом возникает необходимость 
реализации задач по обеспечению режимов оптималь-
ного функционирования дуговых сталеплавильных 
печей и решения задач прогнозирования основных 
показателей электроплавки [5 – 8]. 

Для решения поставленных задач целесообразны 
использование ресурсов математического моделирова-
ния и разработка инструментальной системы для рас-
чета статических режимов процесса, то есть расчета 
и анализа процесса на уровне входных-выходных пото-
ков [9 – 12]. 

Методики расчета статических режимов позволяют 
решать следующие задачи: расчеты материального 
и теплового балансов процесса1 [13 – 15]; оценка пре-
дельных энергетических возможностей; определение 
термодинамических границ существования и условий 
взаимодействия компонентов в металлургическом агре-
гате; выбор наиболее эффективных компонентов вход-
ного потока с целью получения металла с заданными 
свойствами для достижении оптимальных технико-
экономических показателей [13 – 16].

 Методы исследования

При создании статической модели расчета электро­
сталеплавильный процесс рассматривали как сложную 
термодинамическую систему, в которую поступают 
конденсированные и газообразные входные среды, 
а конечными продуктами являются металл, шлак и 
газ  [17 – 20]. В составе конденсированных входных 
потоков, в зависимости от варианта технологии, при-
сутствуют: металлошихта (жидкий или чушковый 
чугун, металлический лом); твердые окислители (агло-
мерат, железная руда, окатыши); шлакообразующие 
материалы (известь, известняк, плавиковый шпат); 
науглероживатели (металлургический кокс, коксовый 
орешек, пыль установок сухого тушения кокса (УСТК), 
электродный бой и т. д.); ферросплавы. Газообразными 
входными потоками являются кислород и природный 
газ [21 – 23].

Тогда определяющими параметрами входных пото-
ков будут: K – общее количество; K f, K г и ,  – коли-
чество и масса конденсированных, газообразных пото-
ков (индексы f и г соответствуют конденсированным и 
газообразным потокам); ,  – количество веществ 
в k-ом потоке; ,  и ,  – температура и плотность 
потоков, °С и кг/м3; |Rm|k , {Rm}k – содержание вещества 
Rm в k-ом потоке, %. 

Выходные потоки характеризуют параметры: Gм , 
Gшл , Gг – масса металла, шлака, газа; tм , tшл , tг – тем-
пература металла, шлака, газа, °С; Nм , Nшл , Nг – коли-
чество веществ в соответствующих фазах; [Rn ], (Rn ), 
{Rn } – содержание вещества Rn в металлической, шла-
ковой и газовой фазах.

При рассмотрении параметров системы приняли, 
что вещества Rm и Rn являются элементами мно­
жества   и могут присутствовать в разных фазах в виде 
различных соединений Eix Ejy , состоящих из элементов 
Еi и Ej множества x. С входными потоками в реактор 
могут поступать следующие соединения: конденсиро-
ванная фаза ‒ Fe, C, Mn, Si, S, P, Al, Ni, Mo, W, V, Ti, Cr, 
B, Cu, FeO, Fe2O3 , Al2O3 , CaO, SiO2 , MgO, MnO, P2O5 , 
CaS, CaF2 , NiO, V2O5 , Cr2O3 , TiO2 , MoO2 , WO2 , CuO, 
B2O3 ; газовая фаза  – H2O, CO2 , O2 , CH4 , CO, N2 , H2 . 

Calculation of the static modes of the electric steelmaking process is carried out on the basis of calculations of material and thermal balances based 
on the laws of mass and energy conservation relative to the components of a heterogeneous system. The solution of the optimization problem based 
on formal methods involves selection of various criteria and setting a system of restrictions (requirements for metal composition; ranges of change 
in the cost of components of charge materials and system state parameters; compliance with the law of mass conservation at the level of fluxes, 
substances and elements; compliance with the law of energy conservation). A feature of the developed method of mathematical modeling and optimi-
zation of the electric steelmaking process is the systematic solution of a set of interrelated optimization problems to determine the optimal conditions 
for the processes in the metallurgical system and the optimal solutions for implementation of electric smelting technology. 

Keywords: electric steelmaking, charge material, metal temperature, modeling, optimization
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Элементами, образующими эти вещества, являются: 
Fe, C, O, Mn, Si, S, P, Al, Ca, Mg, H, F, Ni, Ti, V, Cr, N, B, 
Cu, Mo, W.

Расчет статических режимов электросталеплавиль-
ного процесса заключается в определении расходов 
шихтовых материалов, необходимых для достижения 
заданных параметров и температуры металла, и бази-
руется на балансовых моделях и уравнениях термоди-
намики. Схема расчета представлена на рис. 1.

Задание исходных данных предусматривает ввод 
следующей информации: задание параметров входных 
потоков; задание параметров процесса; задание коэф-
фициентов распределения элементов по фазам.

В качестве параметров процесса приняты: tм , tшл , 
tг – температура фаз, °С, Qпот ‒ тепловые потери в окру-
жающую среду, Qкор  – потери металла с корольками; 
ηCO – степень окисления углерода до СО; ηFeO – степень 
окисления железа до FeO; α – степень усвоения кисло-
рода.

Коэффициенты распределения элементов по фазам 
заданы с учетом экспериментальных данных в задан-

ных диапазонах изменения параметров входных-выход-
ных потоков. 

В качестве технико-экономических показателей при-
няты: Э  – энергоемкость процесса, кВт·ч/т; С  – себе-
стоимость продукции, руб./т; П – производительность 
агрегата, т/ч; gk – удельные расходы материалов, кг/т. 

После задания необходимых для расчета параметров 
формируется таблица исходных данных по входным 
потокам. В качестве исходной информации исполь-
зуются: температура, плотность и расход k-го вход-
ного потока. Ввод исходных данных предусматривает 
задание химического состава шихтовых материалов. 
Для всех вариантов расчетов приведен базовый состав 
конденсированных и газообразных входных потоков, 
а  также летучих компонентов шихты, который при 
желании может быть изменен пользователем.

 Результаты и их обсуждение

Расчет статических режимов электросталеплавиль-
ного процесса осуществляется на основе материаль-

Рис. 1. Схема расчета электросталеплавильного процесса

Fig. 1. Calculation scheme of electric steelmaking process
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ного и теплового балансов, базирующихся на законах 
сохранения массы и энергии относительно составляю-
щих гетерогенной системы. Алгоритм расчета матери-
ального и теплового балансов представлен на рис. 2.

Материальный баланс для всей системы на уровне 
входных-выходных потоков имеет вид:

С учетом фаз уравнение материального баланса 
можно представить следующим образом:

Общая масса веществ, поступающих в печь с вход-
ными потоками, соcтавляет:

Масса веществ выходных потоков определяется 
массой веществ в металлической, шлаковой и газовой 
фазах:

Таким образом, уравнение материального баланса 
на уровне потоков веществ имеет следующий вид:

Для того, чтобы определить состав фаз выходных 
потоков, составляются уравнения баланса по каждому 
элементу Еi , который может присутствовать в разных 
фазах в виде различных соединений:

где ,  ‒ концентрация m-го вещества,  
 

содержащего элемент Еi в k-ом конденсированном или 
газообразном входном потоке соответственно, %; [Ei ] ‒ 
концентрация вещества, состоящего из элемента Еi ,   

в  металле,  %; ,   – концентрация n-го  
 

вещества, содержащего элемент Еi в шлаковой и газо-
вой фазах выходного потока соответственно,  %; , 

 ,  – количество веществ, содержащих элемент Еi , 
в k-ом входном потоке, шлаке и газе; хm , ym  – стехио­
метрические коэффициенты m-го соединения эле-
мента Еi ;  ,  – молярные массы Еi элемента  
 

и его соединений, кг/моль.
Общая масса конденсированного вещества R, посту-

пающего в систему с входными потоками, составляет:

Масса газообразного вещества R, поступающего в 
систему с входными потоками, также определяется с уче-
том его содержания в газообразных входных потоках:

Состав фаз выходного потока определяется следую-
щим образом. В соответствии с коэффициентами рас-
пределения элементов между фазами количество эле-
мента Еi в металле определяется по формуле:

здесь  – коэффициент распределения элемента Ei 
в металле.

Количество оксида элемента Еi в шлаке соответст-
венно составляет

Определяем количество кислорода, которое оста-
ется в системе после окисления всех компонентов и 
затрачивается на окисление железа:

Определяем количество оксидов железа в шлаке:
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Рис. 2. Алгоритм расчета материального и теплового балансов

Fig. 2. Algorithm for calculating material and thermal balances
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Тогда количество железа в металле определим сле-
дующим образом:

Соответственно массы металла и шлака будут 
составлять:

Аналогично проводится расчет состава и массы фаз 
в ковше, только в данном случае входными потоками 
являются металл, полученный в печи, и шлак, частично 
попадающий в ковш при сливе.

Для расчета состава компонентов газовой фазы 
предложен следующий механизм образования отхо-
дящих газов в электропечи. В технологии с приме-
нением природного газа сделано допущение его пол-
ного сгорания, что приводит к химическому составу 
газов в выходном потоке при классическом разложе-
нии. 

При полном сгорании природного газа образуются 
СО2 и Н2О:

Количество СО, образующегося при горении угле-
рода шихты, можно определить следующим образом:

С учетом горения природного газа количество СО2 
в отходящих газах будет составлять:

Общее количество водорода в отходящих газах 
составляет: 

Количество водяных паров определяется как

Количество азота в отходящих газах равно коли­
честву азота, поступающего с входными потоками 
в единицу времени:

Количество SO2 в отходящих газах определяется 
в соответствии с коэффициентом перехода серы в газо-
вую фазу:

Общая масса газа составляет: 

При выводе уравнений теплового баланса принято, 
что основными определяющими процессами для тепло-
вого состояния являются: физическое тепло шихтовых 
материалов; теплообмен с окружающей средой; тепло 
от горения электрической дуги; химические реакции 
с  соответствующими тепловыми эффектами. Уравне-
ния теплового баланса строили на основе закона сохра-
нения энергии Qприх = Qрасх . 

С учетом теплосодержания входных-выходных 
потоков, общего тепла химических реакций, протекаю-
щих в системе, тепла дуги, а также теплообмена с окру-
жающей средой уравнение теплового баланса имеет 
следующий вид:

где , , ΔHl  ‒ энтальпии единицы массы k-го 
конденсированного либо газообразного входного и l-го 
выходного потоков относительно нормальных условий 
и температуры 298 К; Qдуг ‒ приход тепла в систему от 
горения дуги; Qпот  ‒ тепловые потери в окружающую 
среду; ΔНх.р.  ‒ суммарный тепловой эффект химичес­
ких реакций. 

Энтальпию, отличную от нуля, имеет только жидкий 
чугун, тогда энтальпия единицы массы жидкого чугуна 
относительно T = 298 К будет равна: 

где  ‒ изменение энтальпии m-го вещества жид- 
 

кого чугуна при нагреве от 298 К до Tk ,  кДж/моль; 
 ‒ концентрация вещества Rm , %;  ‒ молярная  

 

масса вещества Rm , кг/моль.
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Энтальпии единицы массы металла, шлака и газа 
соответственно равны: 

Тепловой эффект химических реакций определя-
ется суммой тепловых эффектов независимых реакций 
перехода системы из начального состояния в конечное: 

где W – число независимых реакций;  – 
тепловой эффект w-ой химической реакции, кДж/моль; 

 ‒ стандартный тепловой эффект w-ой химической 
реакции;  ‒ количество молей вещества R, про­
реагировавшего в w-ой реакции.

Число молей участвовавшего в реакции вещества 
Rw определяется разностью его содержания во входных 
и выходных потоках:

Тепло от горения дуги определяем с учетом расхода 
электроэнергии:

Qдуг = 3600E,

где Е – расход электроэнергии, кВт·ч.
С учетом вышеизложенного уравнение теплового 

баланса имеет следующий вид:

Основными статьями приходной части теплового 
баланса являются тепло жидкого чугуна, тепло экзотер-
мических реакций окисления компонентов шихты газо-
образным кислородом, тепло реакций шлакообразова-

ния и тепло горения дуги. К расходной части теплового 
баланса относятся затраты тепла на нагрев металла, 
шлака и газа, на разложение карбонатов и оксидов 
железа, на испарение влаги и тепловые потери в окру-
жающую среду. 

Энтальпии входных и выходных потоков рассчиты-
вали с использованием следующих справочных дан-
ных: коэффициентов аппроксимационного уравнения 
для теплоемкости вещества (c0 , c–1 , c1 , c2 , c3 ), измене-
ния энтальпии образования и энтропии при стандарт-
ной температуре (  ,   ), данных по фазовым  
 

переходам (Тф.п ,  ) для индивидуальных веществ.
Решение оптимизационной задачи на основе фор-

мальных методов предусматривает выбор различных 
критериев и задание системы ограничений (требования 
к составу металла, диапазоны изменения расходов ком-
понентов шихтовых материалов и параметров состоя­
ния системы, соблюдение закона сохранения массы 
на уровне потоков, веществ и элементов; соблюдение 
закона сохранения энергии). 

В качестве критериев могут быть выбраны следую-
щие показатели:

– суммарный расход шихтовых материалов на еди-
ницу продукции, кг/т,

– себестоимость продукции, руб/т,

– энергозатраты на единицу продукции, ГДж/т,

– производительность агрегата

где Цk – цена k-го материала входных потоков, руб/т; 
О.Р. – общезаводские затраты, руб./т; Р.П. ‒ расходы по 
переделу, руб./т; Эk – удельная энергоемкость k-го мате-
риала, ГДж/т.

Постановка задачи оптимизации заключается в на­
хождении экстремума одного из критериев при выпол-
нении следующих ограничений:

 – на диапазоны изменения расходов шихтовых 
материалов:
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Gk min < Gk < Gk max ;

– на параметры металла и шлака:

[Rn ]min < [Rn ] < [Rn ]max (n = 1 ÷ Nм );

(Rn )min < (Rn ) < (Rn )max (n = 1 ÷ Nшл );

Tl min < Tl < Tl max (l = 1 ÷ L);

‒ при соблюдении закона сохранения массы на 
уровне потоков, веществ и элементов:

‒ закона сохранения энергии:

‒ выполнение одного из целевых условий:

Pmin < P < Pmax ;

Cmin < C < Cmax ;

Эmin < Э < Эmax ;

Пmin < П < Пmax .

Таким образом, разработан метод математического 
моделирования процесса электроплавки и его оптими-
зации, который включает системное решение взаимос-
вязанных оптимизационных задач. 

 Выводы

Выполнен анализ и разработан метод математиче-
ского моделирования и оптимизации электросталепла-
вильного процесса, особенностью которого является 
системное решение комплекса взаимосвязанных опти-
мизационных задач по определению приемлемых усло-
вий протекания процессов в металлургической системе 
с использованием методов моделирования и оптимиза-
ции. Предложены технологические режимы реализа-
ции технологии электроплавки. 
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С.М.  Кирова в 1998 г. по специальности «Металлур-
гия черных металлов», пройдя все ступени научной 
карьеры от стажера-исследователя до главного науч-
ного сотрудника и заведующего лабораторией стали 
и ферросплавов. В 2001 г. Олег Вадимович защитил 
кандидатскую диссертацию, в 2017  – докторскую, 
а с 2022 г. является членом-корреспондентом Россий-
ской академии наук. Сегодня он признанный и авто-

ритетный специалист в области теории и технологии 
современной металлургии, научная деятельность 
которого посвящена развитию физико-химических 
и технологических основ металлургических процес-
сов, созданию новых материалов, предназначенных 
для легирования и модифицирования стали, перера-
ботки нетрадиционных и техногенных видов сырья, 
оценки сырьевой базы ферросплавного производства. 
Для выполненных О.В. Заякиным фундаментальных 
исследований характерно их органичное сочетание 
с практической реализацией результатов на российс­
ких и зарубежных промышленных предприятиях 
металлургической отрасли. Под его руководством 
созданы новые сплавы с марганцем, ниобием, хро-
мом, никелем, кремнием и ванадием; разработаны и 
запатентованы методы получения инновационных 
составов ферросплавов, содержащих бор и марганец, 
для выплавки экономнолегированных сталей, исполь-
зуемых при производстве труб большого диаметра. 
По  данному научному направлению на сегодняшний 
день уже получено 78 авторских свидетельств и патен-
тов и работа активно продолжается. 

Результаты его исследований прошли промышлен-
ные испытания и были успешно внедрены на ведущих 
отечественных (АО «Серовский завод ферросплавов») 
и зарубежных металлургических предприятиях (ТНК 
«Казхром», Республика Казахстан) с полученим зна-
чительных экономических эффектов.

Олег Вадимович имеет большой опыт создания 
и руководства научными коллективами. В 2018 г. им 
организована лаборатория стали и ферросплавов, сфор-
мирован дружный и эффективный коллектив, сочета-
ющий опыт и эрудицию старшего поколения сотруд-
ников с научной активностью и любознательностью 
молодежи. С 2020 по 2022 гг. он был заместителем 
директора по научной работе Института металлургии 
УрО РАН. Огромное внимание Олег Вадимович уде-
ляет наставнической и педагогической деятельности. 
Под его научным руководством проходят обучение 
аспиранты, а также успешно защищаются кандидат-
ские и докторские диссертационные работы на сои-
скание ученой степени PhD (Республика Казахстан). 
Заякин О.В. – автор более 350 научных работ, 3 моно-
графий и 17 Евразийских и Российских патентов. Он 

Члену-корреспонденту РАН О.В. Заякину 50!

Юбилеи Anniversaries
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является членом редколлегий журналов «Проблемы 
черной металлургии и материаловедения», «Метал-
лург», «Известия Волгоградского государственного 
технического университета». Олег Вадимович вно-
ситносит весомый вклад в научно-организационную 
и экспертную деятельность, являясь членом Научного 
совета по металлургии и металловедению ОХНМ РАН; 
Ученого совета ИМЕТ УрО  РАН и УИМ и диссерта­
ционных советов при ИМЕТ УрО РАН, СибГИУ, 
КарНУ. Он – зарубежный эксперт Независимого агент-
ства аккредитации и рейтинга (НААР), Международ-
ного аккредитационного агентства ULE «KAZSEE», 
Независимого агентства по обеспечению качества 
в  образовании (IQAA), Центрально-Азиатской Ассо-
циации по аккредитации образования (САААЕ). 

Разносторонняя и эффективная деятельность Зая-
кина О.В. была многократно отмечена престижными 
наградами, в том числе медалью Н.  Масалова, пре-
мией Губернатора Свердловской области, премией 

имени чл.-корр. УрО РАН В.Е. Грум-Гржимайло, 
юбилейной медалью «300 лет Российской академии 
наук», Почетными грамотами различного уровня. Все, 
кому выпала удача совместной работы и дружеского 
общения с Олегом Вадимовичем, отмечают, наряду 
с высоким профессионализмом, его прекрасные чело-
веческие качества: доброжелательность, готовность 
прийти на помощь и подсказать верное решение слож-
ной проблемы.

Коллектив Института металлургии 
имени академика Н.А. Ватолина УрО РАН, 

редакция журнала «Известия ВУЗов. Черная 
металлургия», коллеги и друзья от всей 

души поздравляют Олега Вадимовича 
со знаменательным юбилеем и желают ему 
крепкого здоровья, неиссякаемой энергии, 

новых научных свершений на благо 
отечественной науки, счастья и тепла 

в кругу близких и друзей!
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