© 2021. Вусихис А.С., Леонтьев Л.И., Селиванов Е.Н. Термодинамическое моделирование восстановления железа и цинка из расплава ...

ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ МЕТАЛЛУРГИЧЕСКИХ ПРОЦЕССОВ PHYSICO-CHEMICAL BASICS OF METALLURGICAL PROCESSES

Оригинальная статья УДК 541.124

DOI 10.17073/0368-0797-2021-7-488-497

Термодинамическое моделирование восстановления железа и цинка из расплава B₂O₃ – CaO – Fe₂O₃ – ZnO смесями CO – CO₂ и H₂ – H₂O

А. С. Вусихис¹, Л. И. Леонтьев^{1, 2, 3}, Е. Н. Селиванов¹

¹Институт металлургии УрО РАН (Россия, 620016, Екатеринбург, ул. Амундсена, 101)

² Национальный исследовательский технологический университет «МИСиС» (Россия, 119049, Москва, Ленинский пр., 4)

³ Президиум РАН (Россия, 119991, Москва, Ленинский пр., 32а)

Аннотация. В представленной статье приведены результаты термодинамического моделирования процессов восстановления цинка и железа из расплавов $B_2O_3 - CaO - Fe_2O_3 - ZnO$ смесями $CO - CO_2$ и $H_2 - H_2O$, содержащими $0 - 60 \% CO_2$ (H_2O) в интервале температур 1273 – 1673 К. В работе использована методика, описывающая восстановление металлов из оксидного расплава газом в барботажных процессах в условиях, обеспечивающих приближение к реальным системам. Ее оригинальность состоит в том, что равновесие определяют для каждой единичной порции газа, вводимой в рабочее тело, а содержание оксидов восстанавливаемых металлов в каждом расчетном цикле принимают из предшествующих данных. В ходе расчетов проведена оценка изменения содержания оксидов цинка (C_{ZnO}) и железа ($C_{Fe_2O_3}, C_{Fe_3O_4}$ и C_{Fe_3O}) в расплаве и степени их восстановления. Показано, что при восстановлении CO или H_2 этот процесс протекает в три этапа. На первом этапе происходит восстановление Fe_2O_3 до Fe_3O_4 и FeO. Значения $C_{Fe_2O_3}$, и $C_{Fe_3O_4}$ и C_{FeO} . К концу этапа $C_{Fe_3O_4}$ достигает максимального значения La втором этапе имеет место переход $Fe_3O_4 \rightarrow FeO$, когда значения C_{FeO} достигают максимума. На этих этапах возникает небольшое увеличение C_{ZnO} . На третьем этапе значения C_{FeO} и C_{ZnO} уменьшаются, происходит восстановление железа и цинка. Рост температуры резко снижает расход газа на восстановление цинка в 2 – 3 раза, а замена CO на H_2 уменьшается но менее, чем на 20 %. В присутствии окислителей (CO_2 или H_2O) восстанавливается только цинк. Процесс завершается, когда конечное содержание оксида цинка в расплаве соответствует равновесному с исходным составом газа. Чем выше температуры дезко снижает температуры росстановления инталься.

Ключевые слова: методика, термодинамическое моделирование, кинетика, восстановительный газ, барботаж, многокомпонентный оксидный расплав, цинк, железо

Финансирование: Работа выполнена при поддержке Российского фонда фундаментальных исследований по проекту №18-29-24093 мк.

Для цитирования: Вусихис А.С., Леонтьев Л.И., Селиванов Е.Н. Термодинамическое моделирование восстановления железа и цинка из расплава B₂O₃−CaO-Fe₂O₃−ZnO смесями CO-CO₂ и H₂−H₂O // Известия вузов. Черная металлургия. 2021. Т. 64. № 7. С. 488–497. https://doi.org/10.17073/0368-0797-2021-7-488-497

Original article

THERMODYNAMIC MODELING

OF IRON AND ZINC REDUCTION FROM $B_2O_3 - CaO - Fe_2O_3 - ZnO$ Melt BY CO - CO₂ AND H₂ - H₂O MIXTURES

A. S. Vusikhis¹, L. I. Leont'ev^{1, 2, 3}, E. N. Selivanov¹

¹ Institute of Metallurgy, Ural Branch of the Russian Academy of Science (101 Amundsena Str., Yekaterinburg 620016, Russian Federation)
² National University of Science and Technology "MISIS" (MISIS) (4 Leninskii Ave., Moscow 119049, Russian Federation)
³ Scientific Council on Metallurgy and Metal Science of Russian Academy of Sciences (Department of Chemistry and Material Sciences)
(22a Lavingkii Ava., Mascow 110001, Russian Federation)

(32a Leninskii Ave., Moscow 119991, Russian Federation)

Abstract. The paper presents the thermodynamic modeling results of zinc and iron reduction from B_2O_3 -CaO-Fe₂ O_3 -ZnO melts by CO-CO₂ and H_2 -H₂O mixtures containing 0 – 60 % CO₂ (H₂O) at 1273 – 1673 K using a technique describing the reduction of metals from an oxide melt by gas in bubbling processes, under conditions that provide an approximation to real systems. Its originality is equilibrium determination for each individual portion of gas supplied into the working fluid. The reducible metals oxides content in each calculation cycle is taken from the previous data. During the calculations, changes in the content of zinc (C_{ZnO}) and iron ($C_{Fe_2O_3}$, $C_{Fe_3O_4}$ and C_{FeO}) oxides in the melt and the degree of their reduction were estimated. When using CO or H₂ as a reducing agent, this process proceeds in three stages. In the first stage, Fe₂O₃ is reduced to Fe₃O₄ and FeO. C_{Fe,O_3} values decrease to almost zero, while C_{Fe,O_4} and C_{FeO} increase simultaneously. By the end of the stage, C_{Fe,O_4} reaches its maximum value. At the

second stage, the $Fe_3O_4 \rightarrow FeO$ transition occurs, when C_{FeO} values reach its maximum. At these stages, there is a slight increase in the C_{ZnO} . At the third stage, the values C_{FeO} and C_{ZnO} decrease, and iron and zinc are reduced. An increase in temperature dramatically reduces the gas consumption for zinc reduction by 2 – 3 times, and the replacement of CO with H₂ reduces it by less than 20 %. In the presence of oxidizing agents (CO or H₂O), only zinc is reduced. The process ends when the final content of zinc oxide in the melt corresponds to the equilibrium with the initial gas composition. The higher the temperature, the less C_{ZnO} is. The obtained data are useful for the development of technologies for the selective recovery of metals.

Keywords: methodology, thermodynamic modeling, kinetics, reducing gases, bubbling processing, multicomponent oxide melts, zinc, iron

Funding: The work was supported by the Russian Foundation for Basic Research, project No. 18-29-24093 MK.

For citation: Vusikhis A.S., Leont'ev L.I., Selivanov E.N. Thermodynamic modeling of iron and zinc reduction from B₂O₃-CaO-Fe₂O₃-ZnO melt by CO-CO₂ and H₂-H₂O mixtures. *Izvestiya. Ferrous Metallurgy*. 2021, vol. 64, no. 7, pp. 488–497. (In Russ.). *https://doi.org/10.17073/0368-0797-2021-7-488-497*

Шлаки и пыли черной и цветной металлургии содержат большое количество цинка, поэтому их можно рассматривать как альтернативные источники сырья [1, 2], для переработки которых разработаны различные способы, такие как вельцевание, фьюмингование и электротермия [3 – 13]. Фьюмингование проводят в фьюминг-печах путем барботажа шлакового расплава газом-восстановителем, полученным в результате конверсии угля [6] или природного газа [14, 15].

Барботажные процессы широко распространены как в черной [16, 17], так и в цветной [18-22] металлургии. В связи с этим их изучению посвящено большое количество работ [23 – 26]. Однако в подавляющем большинстве исследований рассматривались процессы, протекающие в условиях, далеких от равновесия. В реальных условиях плавки ход процесса определяется временем нахождения отдельных пузырей газа-восстановителя в расплаве, которое зависит от высоты слоя расплава, его физико-химических свойств (вязкость, плотность и поверхностное натяжение) и размеров пузырей [27]. При значительной высоте слоя состав отходящих газов близок к равновесному [28]. В этом случае, независимо от того, в каком режиме (кинетическом, диффузионном или смешанном) протекает процесс, его ход определяется термодинамическими свойствами компонентов системы.

Методы термодинамического моделирования (ТДМ) широко применяют для предварительного анализа металлургических процессов. Предлагаемые методологии ТДМ [29, 30] предназначены для анализа равновесия в замкнутых системах, что не отвечает реальным процессам в пирометаллургических агрегатах.

Для ТДМ барботажных процессов разработана методика [31, 32], оригинальность которой состоит в том, что равновесие определяют для каждой единичной порции газа, вводимой в рабочее тело, а содержание оксидов восстанавливаемых металлов в каждом расчетном цикле принимают из предшествующих данных. В методологии приняты следующие допущения:

 – расчет производится для системы «единичный объем газа – расплав»;

при всплывании единичного объема газа (пузыря)
в системе достигается равновесное состояние;

 в ходе взаимодействия с очередной порцией газа равновесное содержание оксидов распространяется на весь объем расплава.

Предусмотрена следующая последовательность расчетов:

введение исходных данных по составам и количеству оксидного расплава и газа;

 – расчет равновесного состояния системы методами ТДМ;

 – фиксация равновесных составов и количества компонентов в оксидном и металлическом расплавах, а также газе;

 проведение следующего цикла, когда за исходный принимается состав оксидного расплава, полученный в ходе предыдущего расчета, при этом восстановленный металл считается выведенным из системы и не учитывается, а вводимая порция газа по составу и количеству не меняется;

 – циклы повторяют до тех пор, пока количество восстанавливаемых оксидов в расплаве не уменьшится до заданной величины.

Использование последовательных расчетов, в которых в рабочее тело вводятся единичные порции восстановителя и выводятся образованные газовая и металлическая фазы, применительно к действующим и разрабатываемым технологиям позволяет определять, в зависимости от количества введенного газа-восстановителя (V_g), следующие величины:

– содержание оксидов (C_{MeO}) в расплаве и металлов (C_{Me}) в сплавах;

– коэффициенты перехода компонентов в элементное состояние (ϕ_{Me}) и распределение элементов;

– оценивать влияние температуры и состава газа.

Этот подход дает возможность моделировать барботажные процессы и качественно оценить полноту протекания реакций в пирометаллургических агрегатах, использующих продувку расплава газом-восстановителем.

Основа большинства шлаков – оксид кремния. Однако температура плавления боратных систем на много ниже, поэтому для изучения кинетики барботажного восстановления они более удобны. В системе B_2O_3 –CaO эвтектика с соотношением B_2O_3 /CaO, равным 3, имеет наименьшую температуру плавления. Промышленные шлаки, кроме ZnO, содержат и оксиды железа, поэтому в систему B_2O_3 –CaO добавлено 20 % Fe₂O₃ и 2 % ZnO. Используемый в качестве восстановителя конвертиро-

ванный газ в зависимости от значения коэффициента расхода воздуха может содержать водород, монооксид углерода, углекислый газ и водяной пар. Представляет интерес анализ влияния состава газа на ход процесса.

В данной работе приведены результаты моделирования процесса совместного восстановления цинка и железа в системе B_2O_3 –CaO–Fe $_2O_3$ –ZnO, химический состав которой указан выше, смесями CO–CO $_2$ (H_2 – H_2O) в интервале температур 1273–1673 К при давлении 0,1 МПа. Единичная порция газа составляет 7,2 дм³/кг. Для расчетов принято, что в рассматриваемом интервале температур цинк находится в газообразном состоянии и взаимно не растворяется с железом, а оксидная фаза является идеальным раствором.

Процессы взаимодействия оксидов цинка и железа системы B_2O_3 -CaO-Fe₂O₃-ZnO с монооксидом углерода несколько отличаются от процесса, где в качестве газа-восстановителя использован водород. Однако по восстановлению железа в обоих случаях процесс можно разделить на три этапа (рис. 1, 2).

На первом этапе происходит снижение содержания в расплаве Fe_2O_3 ($C_{\text{Fe}_2\text{O}_3}$) и увеличение Fe_3O_4 ($C_{\text{Fe}_3\text{O}_4}$) и FeO (C_{FeO}). На втором этапе продолжается увеличение содержания FeO и снижение Fe_2O_3 и Fe_3O_4 . Вследствие этого за счет уменьшения общей массы

расплава в ходе процесса несколько увеличивается доля в нем ZnO (C_{7nO}). На третьем этапе появляется металлическое железо и уменьшается содержание FeO. На первом этапе расходуется одинаковое количество СО и H_2 (14,4 дм³/кг) и, независимо от восстановителя, чем выше температура, тем больше C_{FeO} и C_{FeO} , а $C_{\text{Fe₂O_4}}$ меньше. При восстановлении водородом второй этап заканчивается при расходе газа 36 – 43 дм³/кг, максимальное содержание FeO повышается от 18.37 (1273 К) до 18,56 (1673 К), а содержание Fe₂O₂ и Fe₃O₄, независимо от температуры, уменьшается до 0,01 и 0,05 дм³/кг соответственно. Если в качестве восстановителя использован монооксид углерода, с ростом температуры повышается как максимальное содержание FeO (от 18,37 до 18,71 %), так и расход CO, при котором достигается максимум (от 43 до 86 дм³/кг). Это хорошо видно на кривых зависимости степени металлизации железа от расхода газа-восстановителя (рис. 1, в и 2, в), так как металлическое железо начинает появляться на третьем этапе при достижении содержания FeO в оксидном расплаве максимального значения. Цинк восстанавливается практически с первых циклов расчета, но его количество до расхода 30 дм³/кг очень мало (рис. 1, δ и 2, δ). Интенсивное восстановление цинка начинает происходить при достижении содержания

Рис. 1. Изменение содержания оксидов железа и цинка в расплаве (*a*), степени металлизации цинка (*б*) и железа (*в*), содержания СО и цинка в отходящем газе (*г*) в зависимости от количества СО при температурах 1273 (♦), 1473 (■), 1673 (●) К

Fig. 1. Changes in the content of iron and zinc oxides (a) in the melt, metallization degree of zinc (δ) and iron (s), content of CO and zinc in the exhaust gas (z) depending on the amount of CO, at temperatures: 1273 (�), 1473 (■), 1673 (●) K

Рис. 2. Изменение содержания оксидов железа и цинка в расплаве (*a*), степени металлизации цинка (*б*) и железа (*в*), содержания H₂ и цинка в отходящем газе (*г*) в зависимости от количества H₂ при температурах 1273 (◆), 1473 (■), 1673 (●) К

Fig. 2. Changes in the content of iron and zinc oxides (a) in the melt, metallization degree of zinc (6) and iron (s), content of H₂ and zinc in the exhaust gas (z) depending on the amount of H₂, at temperatures: 1273 (◆), 1473 (■), 1673 (●) K

ZnO максимального значения. При одинаковом конечном количестве использованного газа-восстановителя (табл. 1 и 2) переход в металлическую фазу как цинка, так и железа выше при восстановлении водородом.

Температурные зависимости ϕ_{Zn} и ϕ_{Fe} отличаются друг от друга. При одинаковом расходе газа ϕ_{Zn} тем больше, чем выше температура. Переход в металлическое состояние железа зависит от количества восстановленного цинка. До расхода СО, равного 100 дм³/кг, и водорода 80 дм³/кг, когда ϕ_{Zn} достигает величины 98 % (1673 К), чем выше температура, тем ниже ϕ_{Fe} . При более высоких расходах газов при температуре 1673 К цинк практически полностью восстановлен, поэтому

почти весь газ расходуется на восстановление железа, что приводит к интенсификации процесса. Поэтому ϕ_{Fe} растет быстрее, чем при других температурах.

Расчеты взаимодействия системы $B_2O_3-CaO - Fe_2O_3-ZnO$ с монооксидом углерода и водородом при его количестве в единичной порции, равном 7,2 дм³/кг, показали, что за 15 циклов (соответствует расходу 108 дм³/кг) при 1273 К степень металлизации цинка составляет 8,40 и 8,86 %, а железа 7,00 и 8,68 % соответственно. Линейно экстраполируя зависимость степени металлизации цинка до расхода 360 дм³/кг, определили величину ϕ_{Zn} , которая составляет около 40 %. Следовательно, для получения вышеуказанной степе-

Таблица 1

Параметры системы, отвечающие заключительному циклу расчетов (единичная порция CO – 7,2 дм³/кг)

Table 1. System parameters corresponding to the final calculation cycle (single portion of CO 7.2 dm³/kg)

CO _{исх} ,%	<i>Т</i> , К	V_g , дм ³ /кг	С _{Fe₂O₃, % (по массе)}	С _{Fe₃O₄, % (по массе)}	С _{FeO} , % (по массе)	С _{ZnO} , % (по массе)	$\phi_{Zn},\%$	$\phi_{Fe},\%$	СО _{кон} , %
	1273	108	0,0085	0,04	17,17	1,91	8,4	7,0	92,78
100	1473	108	0,0080	0,03	18,43	0,69	66,7	1,0	91,61
	1673	108	0,0060	0,02	18,53	0,02	99,4	1,3	94,95

Таблица 2

Параметры системы, отвечающие заключительному циклу расчетов (единичная порция H₂ – 7,2 дм³/кг)

Table 2. System parameters co	prresponding to the final ca	lculation cycle (single	portion of H. 7.2	2 dm ³ /kg)

$\mathrm{H_{2ucx}},\%$	<i>Т</i> , К	V_g , дм ³ /кг	С _{Fe₂O₃, % (по массе)}	С _{Fe₃O₄, % (по массе)}	С _{FeO} , % (по массе)	С _{ZnO} , % (по массе)	$\phi_{Zn},\%$	$\phi_{Fe},\%$	Н _{2 кон} , %
107	1272	104,0	0,0080	0,04	16,57	1,910	8,40	10,90	89,16
	12/3	108,0	0,0075	0,04	16,50	1,910	8,86	11,50	89,22
100 1473	1472	100,0	0,0065	0,03	17,10	0,630	68,20	7,62	85.17
	14/5	108,0	0,0064	0,03	17,14	0,600	71,87	8,68	85,55
	1(72	93,6	0,0050	0,02	17,50	0,010	99,54	7,22	86,74
	1075	108,0	0,0046	0,01	16,99	0,003	99,88	10,13	87,29

Рис. 3. Изменение содержания оксидов железа и цинка в расплаве (*a*), степени металлизации цинка и железа (*б*), содержания СО и цинка в отходящем газе (*в*) в зависимости от количества смеси СО-СО, при температурах 1273 (◆), 1473 (■), 1673 (●) К

Fig. 3. Changes in the content of iron and zinc oxides (*a*) in the melt, metallization degree of zinc (δ) and iron (*s*), content of CO and zinc in the exhaust gas (*z*) depending on the amount of CO–CO, mixture, at temperatures: 1273 (\diamondsuit), 1473 (\blacksquare), 1673 (\bullet) K

Рис. 4. Изменение содержания оксидов железа и цинка в расплаве (*a*), степени металлизации цинка и железа (*б*), содержания H₂ и цинка в отходящем газе (*в*) в зависимости от количества смеси H₂−H₂O при температурах 1273 (◆), 1473 (■), 1673 (●) К

Fig. 4. Changes in the content of iron and zinc oxides (a) in the melt, metallization degree of zinc (δ) and iron (s), content of H₂ and zinc in the exhaust gas (z) depending on the amount of H₂-H₂O mixture, at temperatures: 1273 (\blacklozenge), 1473 (\blacksquare), 1673 (\bullet) K

ни металлизации цинка необходимо провести 50 циклов расчетов. Для достижения расхода газа, равного 360 дм³/кг, при уменьшении количества циклов до 10 провели расчеты, описывающие взаимодействие CO (H₂) с системой B_2O_3 -CaO-Fe₂O₃-ZnO при условии, что единичная порция газа содержит 36 дм³/кг газа.

Сравнительный анализ результатов расчетов, полученных при содержании в единичной порции газа 7,2 и 36 дм³/кг CO (H_2) (рис. 1 – 4, табл. 1 – 4) подтвердил полученные ранее данные [32]. Качественно зависимости различных параметров от расхода газа не меняются. Однако, чем больше количество газа в единичной порции, тем больше его расход, при котором достигаются одинаковые результаты.

Расчеты, позволяющие оценить влияние кислородного потенциала газа-восстановителя на параметры системы B_2O_3 -CaO-Fe₂O₃-ZnO проводили так же при содержании в единичной порции газа-восстановителя 36 дм³/кг смеси CO-CO₂ (H₂-H₂O) различного соотношения (рис. 3, 4, табл. 3, 4). В этом случае можно говорить о сопоставимости полученных данных.

Расчеты показали следующее. При восстановлении чистым CO (H_2) в процессе присутствуют все этапы по железу. Максимальное содержание Fe₃O₄ в оксидном расплаве достигается в конце первого этапа при расходе обоих газов 36 дм³/кг. Для CO оно составляет 1,5 – 1,0 %, а для водорода 1,0 – 0,4 % (меньшему значению *C* соответствует большая температура). Соот-

ветствующее ему C_{FeO} равно 18,2 – 18,6 (17,7 – 18,6) %, а C_{Fe2O} – 0,30 – 0,32 (0,21 – 0,16) %. Второй этап заканчивается при расходе 72 дм³/кг газа. Максимальное значение C_{FeO} близко для обоих газов – 18,2 – 18,6 (17,7 – 18,6) % и незначительно увеличивается с ростом температуры. Во всех случаях C_{Fe2O} около 0,01 %, а C_{Fe3O_4} менее 0,06 %. Водород лучше восстанавливает железо, чем СО, поэтому к концу третьего этапа количество восстановленного им железа значительно выше при одинаковом расходе газа (табл. 3, 4). Влияние состава газа на восстановление цинка меньше. В основном оно зависит от температуры. Для достижения ϕ_{Zn} , равного 99,0 %, при температуре 1273 К необходимо более 800 дм³/кг газа, при 1473 – порядка 360 дм³/кг, а при 1673 К – 180 дм³/кг. При одинаковом расходе газа количество цинка, восстановленного водородом, на 5 – 10 % больше, чем при восстановлении монооксидом углерода.

Наличие окислителя – СО (H₂O) несколько меняет ход процесса. Первый этап, так же, как и для чистых восстановителей, заканчивается при 36 дм³/кг. Однако значения максимального содержания Fe₃O₄ выше. В за-

Таблица 3

Параметры системы, отвечающие заключительному циклу расчетов (единичная порция СО – 36 дм³/кг)

CO _{исх} ,%	<i>Т</i> , К	V_g , дм ³ /кг	С _{Fe₂O₃, % (по массе)}	С _{Fe₃O₄, % (по массе)}	С _{FeO} , % (по массе)	С _{ZnO} , % (по массе)	$\phi_{Zn}, \%$	$\phi_{Fe},\%$	СО _{кон} , %
	1273	360	0,004	0,018	13,84	1,4100	35,08	26,25	94,05
100	1473	360	0,005	0,017	15,61	0,0290	98,65	17,84	95,09
	1673	180	0,005	0,011	17,96	0,0048	99,77	4,56	95,45
	1273	360	0,034	0,180	18,25	1,8500	9,99	0	79,69
80	1473	360	0,035	0,150	18,47	0,7300	64,96	0	78,73
	1673	360	0,032	0,110	18,64	0,0100	99,31	0	79,84
	1273	360	0,087	0,460	17,92	1,9700	3,84	0	59,89
60	1473	360	0,089	0,370	18,11	1,3600	33,72	0	59,19
	1673	360	0,086	0,290	18,55	0,2300	88,85	0	59,19
	1273	360	0,185	0,950	17,38	2,0100	1,63	0	39,96
40	1473	360	0,187	0,760	17,61	1,7100	16,11	0	39,60
	1673	360	0,183	0,610	17,92	0,7700	62,71	0	38,92

Table 3. System parameters corresponding to the final calculation cycle (single portion of CO 36 dm³/kg)

Таблица 4

Параметры системы, отвечающие заключительному циклу расчетов (единичная порция H₂ – 36 дм³/кг)

Table 4. System parameters corresponding to the final calculation cycle (single portion of H₂ 36 dm³/kg)

Н _{2 исх} , %	<i>Т</i> , К	V_g , дм ³ /кг	С _{Fe₂O₃, % (по массе)}	С _{Fe₃O₄, % (по массе)}	С _{FeO} , % (по массе)	<i>C</i> _{ZnO} , % (по массе)	$\phi_{Zn}, \%$	$\phi_{Fe},\%$	Н _{2 кон} , %
	1273	360	0,002	0,010	11,08	1,360	39,460	40,74	92,31
100	1473	360	0,002	0,003	10,65	0,011	99,530	43,58	92,44
	1673	180	0,000	0,000	15,11	0,001	99,940	20,62	89,32
	1273	360	0,021	0,113	18,34	1,720	16,000	0	79,53
80	1473	360	0,014	0,062	18,66	0,190	90,950	0	79,17
	1673	288	0,001	0,033	18,73	0	99,980	0	79,99
	1273	360	0,054	0,290	18,12	1,890	6,272	0	59,89
60	1473	360	0,037	0,160	18,45	0,760	62,043	0	59,19
	1673	288	0,026	0,090	18,66	0,020	98,810	0	59,42
	1273	360	0,116	0,610	17,76	1,990	2,680	0	39,94
40	1473	360	0,081	0,340	18,15	1,350	34,710	0	39,39
	1673	360	0,058	0,200	18,52	0,120	94,310	0	39,22

висимости от температуры $C_{\text{Fe}_3\text{O}_4}$ составляет соответственно 3,0 – 2,2 % (2,4 – 1,4 %), 5,7 – 4,8 % (5,5 – 4,5 %), 5,2 % (5 %), 8,5 - 7,1 % (8,5 - 7,1 %) при 20, 40, 60 % CO₂ (H₂O), т. е. при восстановлении смесью H₂-H₂O значения максимумов меньше. При этом, чем больше максимальное значение $C_{\text{Fe}_3O_4}$, тем больше соответствующее ему содержание Fe₂O₃ и меньше FeO. Уже в присутствии 20 % CO₂ (H₂O) железо до металла не восстанавливается. Содержание в оксидном расплаве FeO увеличивается до конца процесса. Поэтому началом третьего этапа можно считать максимальное значение содержания в расплаве ZnO, равное 2,04 %, которое при 1273 К достигается при расходе газа 72 дм³/кг, несколько сдвигаясь в сторону меньших расходов с ростом температуры. В это время начинается восстановление цинка. Заканчивается этап, когда содержание CO (H_2) и CO₂ (H_2 O) в конечных порциях отходящего газа становится близким к исходному, отличаясь на величину содержащегося в них цинка. При этом, чем больше окислителя в исходной смеси, тем меньше конечная степень металлизации цинка.

Во всех системах с ростом температуры степень металлизации цинка увеличивается, а увеличение количества окислителя в исходной смеси его уменьшает. Резко возрастает расход газа, необходимый для восстановления. Если для металлизации 99,8 % цинка при содержании в газе 100 % CO (H₂) расход его составляет 180 дм³/кг, то при наличии в смеси 20 % СО₂ он увеличивается в два раза, а H₂O – в 1,6 раз. При этом следует отметить, что смеси Н₂-H₂O восстанавливают цинк

1.

2.

3.

4.

5.

6.

лучше, чем СО-СО₂. Причем, чем больше окислителя, тем выше разница. Так, при восстановлении смесью H₂-H₂O, содержащей 60 % H₂O, величина ϕ_{Zn} составляет более 90 %, а при содержании в смеси СО-СО, 60 % CO₂ φ_{7n} чуть больше 60 %.

Выводы

При восстановлении чистыми восстановителями температура влияет на степень восстановления цинка гораздо больше, чем состав газа. Рост температуры резко уменьшает количество газа, необходимое для достижения одинаковых степеней восстановления цинка, разница может составлять 2 – 3 раза. При равных температурах расход водорода и СО отличается менее, чем на 20 %.

Влияние состава газа на восстановление железа иное. Водород гораздо лучше восстанавливает его, чем СО. Причем, чем ниже температура, тем больше ϕ_{Fe} . Особенно это заметно, когда содержание ZnO в оксидном расплаве снижается до долей процента.

При использовании смесей газов до металлического состояния восстанавливается только цинк. Процесс протекает до тех пор, пока состав конечного газа не будет близок к исходному. Конечная степень металлизации цинка зависит от температуры и содержания окислителя в смеси. При соответствующих температурах она тем меньше, чем больше окислителя в исходной смеси. Эффективность смеси H₂-H₂O гораздо выше, чем СО-СО₂, причем чем больше окислителя в смеси, тем она эффективнее.

Список литературы	RE	FERENCES
Wang C., Li K., Yang H., Li C. Probing study on separating Pb, Zn, and Fe from lead slag by coal-based direct reduction // ISIJ Interna- tional. 2017. Vol. 57. No. 6. P. 996–1003. https://doi.org/10.2355/isijinternational.ISIJINT-2016-683	1.	Wang C., Li K., Yang H., Li C. Probing study on separating Pb, Zn, and Fe from lead slag by coal-based direct reduction. <i>ISIJ Interna-</i> <i>tional</i> . 2017, vol. 57, no. 6, pp. 996–1003. https://doi.org/10.2355/isijinternational.ISIJINT-2016-683
Леонтьев Л.И., Дюбанов В.Г. Техногенные отходы черной и цветной металлургии и проблемы окружающей среды // Экология и промышленность России. 2011. № 4. С. 32–35.	2.	Leont'ev L.I., Dyubanov V.G. Technogenic waste of ferrous and non-ferrous metallurgy and environmental problems. <i>Ekologiya i</i> <i>promyshlennost' Rossii</i> . 2011, no 4, pp. 32–35. (In Russ.).
Якорнов С.А., Паньшин А.М., Козлов П.А., Ивакин Д.А. Разра- ботка технологии и аппаратной схемы пирометаллургической переработки пылей черной металлургии // Цветные металлы. 2017 № 9. С. 39–44. https://doi.org/10.1758//tsm.2017.09.06	3.	Yakornov S.A., Pan'shin A.M., Kozlov P.A., Ivakin D.A. Develop- ment of technology and instrumental scheme of pyrometallurgical processing of ferrous metallurgy dusts. <i>Tsvetnye metally</i> . 2017, no. 9 nn. 39-44 (In Russ.) https://doi.org/10.17580/tsm.2017.09.06
Горлова О.Е., Тарасова А.Е., Ефремова О.Г. Изыскание путей комплексной переработки шламов доменного производства // Вестник Магнитогорского государственного технического университета им. Г.И. Носова. 2005. № 4 (12). С. 4–6.	4.	Gorlova O.E., Tarasova A.E. Efremova O.G. Finding ways of com- plex processing of blast furnace sludge. <i>Vestnik Magnitogorskogo</i> <i>gosudarstvennogo tekhnicheskogo universiteta im. G.I. Nosova.</i> 2005, no 4 (12), pp. 4–6. (In Russ.).
Guezennec A.–G., Huber J.–C., Patisson F., Sessieq P., Birat J.–P., Ablitzer D. Dust formation in electric arc furnace: Birth of the par- ticles // Powder Technology. 2005. Vol. 157. No. 1–3. P. 2–11. https://doi.org/10.1016/j.powtec.2005.05.006	5.	Guezennec AG., Huber JC., Patisson F., Sessieq P., Birat JP., Ablitzer D. Dust formation in electric arc furnace: Birth of the par- ticles. <i>Powder Technology</i> . 2005, vol. 157, no. 1–3, pp. 2–11. https://doi.org/10.1016/j.powtec.2005.05.006
Окунев А.И., Костьяновский И.А., Донченко П.А. Фьюмингование шлаков. М.: Металлургия, 1966. 259 с.	6.	Okunev A.I., Kost'yanovskii I.A., Donchenko P.A. <i>Slag Fuming</i> . Moscow: Metallurgiya, 1966, 259 p. (In Russ.).
Тарасов А.В., Бессер А.Д., Мальцев В.И. Металлургическая переработка вторичного цинкового сырья. М.: ГИНЦВЕТМЕТ,	7.	Tarasov A.V., Besser A.D., Mal'tsev V.I. Metallurgical Process- ing of Secondary Zinc Raw Materials. Moscow: GINTSVETMET,

2004, 219 p. (In Russ.).

- 7. Tapac переработка вторичного цинкового сырья. М.: ГИНЦВЕТМЕТ, 2004. 219 c.
- 8. Козлов П.А. Освоение процессов рециклинга техногенных отходов металлургического производства // Цветная металлургия. 2014. № 2. C. 45-52.
- Kozlov P.A. Development of recycling of metallurgical techno-8. genic waste. Tsvetnaya metallurgiya. 2014, no. 2, pp. 45-52. (In Russ.).

- Reddy R.G., Prabhu V.L., Mantha D. Zinc fuming from lead blast furnace slag // High Temperature Materials and Processes. 2003. Vol. 21, No. 6. P. 377–386.
- Verscheure K., van Camp M., Blanpain B., Wollants P., Hayes P.C., Jak E. Zinc fuming processes for treatment of zinc containing residues // Proceedings of Lead and Zinc, Osaka, 2005. MMIJ, 2005. P. 943–960.
- Morcali M.H., Yucel O., Aydin A., Derin B. Carbothermic reduction of electric arc furnace dust and calcination of waelz oxide by semi-pilot scale rotary furnace // Journal of Mining and Metallurgy. Section B – Metallurgy. 2012. Vol. 48. No. 2. P. 173–184. http://doi.org/10.2298/JMMB111219031M
- Zhang H.N., Li J.L., Xu A.J., Yang Q.X., He D.F., Tian N.Y. Carbothermic reduction of zinc and iron oxides in electric arc furnace dust // Journal of Iron and Steel Research International. 2014. Vol. 21. No. 4. P. 427–432. https://doi.org/10.1016/S1006-706X(14)60066-2
- 13. Тюшняков С.Н., Селиванов Е.Н., Чумарев В.М. Оценка скорости отгонки цинка из шлака в печи постоянного тока // Цветные металлы. 2013. № 12 (852). С. 13–17.
- **14.** Козырев В.В. Отгонка цинка из шлака при фьюминговании природным газом // Цветные металлы. 2009. № 2. С. 61–64.
- Козырев В.В., Бессер А.Д., Парецкий В.М. К вопросу извлечения цинка из шлаков свинцовой плавки // Электрометаллургия. 2013. № 6. С. 31–35.
- Romenets V.A. Romelt Process // I&SM (Iron & Steelmaker). 1995. Vol. 22. No. 1. P. 37–41.
- 17. Дорофеев Г.А., Янтовский П.Р., Смирнов К.Г., Степанов Я.М. Процесс ORIEN для выплавки высококачественных сталей из рудного и энергетического сырья на приципе самоэнергообеспечения // Черные металлы. 2017. № 5. С. 17–23.
- Schlesinger M.E., King M.J., Sole K.C., Davenport W.G. Extractive Metallurgy of Copper. 5th ed. Elsevier, 2011. 481 p.
- **19.** Vignes A. Extractive Metallurgy 3: Processing Operations and Routes ISTE Ltd., John Wiley & Sons, Inc., 2011. 352 p.
- 20. Bakker M.L., Nikolic S., Burrows A.S., Alvear G.R.F. ISACON-VERTTM — continuous converting of nickel/PGM mattes // Journal of the Southern African Institute of Mining and Metallurgy. 2011. Vol. 111. No. 10. P. 285–294.
- Errington B., Arthur P., Wang J., Dong Y. The ISA-YMG lead smelting process // Proceedings of the Int. Symp. on Lead and Zinc Processing, Osaka, 2005. P. 943–960.
- 22. Hughes S., Reuter M.A., Baxter R., Kaye A. AUSMELT technology for lead and zinc processing // Proceedings of Lead and Zinc 2008, 25–29 February 2008, South African Institute of Mining and Metallurgy (SAIMM), South Africa, P. 147–162.
- Русаков М.Р. Обеднение шлаковых расплавов продувкой восстановительными газами // Цветные металлы. 1985. № 3. С. 40–42.
- 24. Комков А.А., Баранова Н.В., Быстров В.П. Исследование восстановительного обеднения высокоокисленных шлаков в условиях барботажа // Цветные металлы. 1994. № 12. С. 26–30.
- 25. Фомичев В.Б., Князев М.В., Рюмин А.А. и др. Исследование процесса обеднения шлаков продувкой их газовыми смесями с различным парциальным давлением кислорода // Цветные металлы. 2002. № 9. С. 32–36.
- 26. Комков А.А., Камкин Р.И. Поведение меди и примесей при продувке медеплавильных шлаков газовой смесью СО–СО₂ // Цветные металлы. 2011. № 6. С. 26–31.
- 27. Вусихис А.С., Леонтьев Л.И., Ченцов В.П., Кудинов Д.З., Селиванов Е.Н. Формирование металлической фазы при барботаже газом-восстановителем многокомпонентного оксидного расплава. Сообщение 1. Теоретические основы процесса // Известия вузов. Черная металлургия. 2016. № 9. С. 639–643. https://doi.org/10.17073/0368-0797-2016-9-639-643
- 28. Вусихис А.С., Дмитриев А.Н., Леонтьев Л.И., Шаврин С.В. Кинетика восстановления оксидов металлов из расплава газомвосстановителем в барботируемом слое // Материаловедение. 2002. №10. С. 30–34.

- Reddy R.G., Prabhu V.L., Mantha D. Zinc fuming from lead blast furnace slag. *High Temperature Materials and Processes*. 2003, vol. 21, no. 6, pp 377–386.
- Verscheure K., van Camp M., Blanpain B., Wollants P., Hayes P.C., Jak E. Zinc fuming processes for treatment of zinc containing residues. In: *Proceedings of Lead and Zinc, Osaka, 2005.* MMIJ, 2005, pp. 943–960.
- Morcali M.H., Yucel O., Aydin A., Derin B. Carbothermic reduction of electric arc furnace dust and calcination of waelz oxide by semi-pilot scale rotary furnace. *Journal of Mining and Metallurgy. Section B Metallurgy*. 2012, vol. 48, no. 2, pp. 173–184. http://doi.org/10.2298/JMMB111219031M
- Zhang H.N., Li J.L., Xu A.J., Yang Q.X., He D.F., Tian N.Y. Carbothermic reduction of zinc and iron oxides in electric arc furnace dust. *Journal of Iron and Steel Research International*. 2014, vol. 21, no. 4, pp 427–432. https://doi.org/10.1016/S1006-706X(14)60066-2
- **13.** Tyushnyakov S.N., Selivanov E.N., Chumarev V.M. Estimation of rate of zinc distillation from slag in direct-current ARC furnace. *Tsvetnye metally*. 2013, no. 12, pp. 13–17. (In Russ.).
- 14. Kozyrev V.V. Distillation of zinc from slag during fuming by natural gas. *Tsvetnye metally*. 2009, no 2, pp. 61-64. (In Russ.).
- Kozyrev V.V., Besser A.D., Paretskii V.M. On zinc extraction from lead smelting slags. *Elektrometallurgiya*. 2013, no 6, pp. 31–35. (In Russ.).
- Romenets V.A. Romelt Process. *I&SM (Iron & Steelmaker)*. 1995, vol. 22, no. 1, pp. 37–41.
- 17. Dorofeev G.A., Yantovskii P.R., Smirnov K.G., Stepanov Ya.M. The process "orien" for smelting of high-quality steels from ore and energy raw materials based on the principle of the energy selfsupplying. *Chernye metally*. 2017, no. 5, pp 17–23. (In Russ.).
- Schlesinger M.E., King M.J., Sole K.C., Davenport W.G. *Extractive* Metallurgy of Copper. 5th Edition, Elsevier, 2011, 481 p.
- 19. Vignes A. Extractive Metallurgy 3: Processing Operations and Routes. ISTE Ltd., John Wiley & Sons, Inc., 2011, 352 p.
- Bakker M.L., Nikolic S., Burrows A.S., Alvear G.R.F. ISACON-VERTTM – continuous converting of nickel/PGM mattes. *Journal* of the Southern African Institute of Mining and Metallurgy. 2011, vol. 111, no. 10, pp. 285–294.
- 21. Errington B., Arthur P., Wang J., Dong Y. The ISA-YMG lead smelting process. In: *Proceedings of the Int. Symp. on Lead and Zinc Processing, Osaka, 2005*, pp. 943–960.
- 22. Hughes S., Reuter M.A., Baxter R., Kaye A. AUSMELT technology for lead and zinc processing. In: *Proceedings of Lead and Zinc 2008*, 25–29 February 2008, South African Institute of Mining and Metallurgy (SAIMM), South Africa, pp. 147–162.
- **23.** Rusakov M.R. Depletion of slag melts by purging with reducing gases. *Tsvetnye metally.* 1985, no 3. pp. 40–42. (In Russ.).
- **24.** Komkov A.A., Baranova N.V., Bystrov V.P. Investigation of reducing depletion of highly oxidized slags under bubbling conditions. *Tsvetnye metally.* 1994, no 12, pp. 26–30. (In Russ.).
- 25. Fomichev V.B., Knyazev M.V., Ryumin A.A., etc. Investigation of slags depletion by purging them with gas mixtures at different partial pressure of oxygen. *Tsvetnye metally*. 2002, no. 9, pp. 32–36. (In Russ.).
- 26. Komkov A.A., Kamkin R.I. Behavior of copper and impurities when purging copper-smelting slags with CO–CO₂ gas mixture. *Tsvetnye metally*. 2011, no 6, pp. 26–31. (In Russ.).
- Vusikhis A.S., Leont'ev L.I., Chentsov V.P., Kudinov D.Z., Selivanov E.N. Metallic phase forming in barbotage of multicomponent oxide melt by reduction gas. Report 1. Theoretical basis of the process. *Izvestiya. Ferrous Metallurgy*. 2016, vol. 59, no. 9, pp. 639-643. (In Russ.).

```
https://doi.org/10.17073/0368-0797-2016-9-639-643
```

 Vusikhis A.S., Dmitriev A.N., Leont'ev L.I., Shavrin S.V. Kinetics of metal oxides reduction from the melt by gas-reducing agent in bubbled layer. *Materialovedenie*, 2002, no. 10, pp. 30–34. (In Russ.).

- **29.** Ватолин Н.А., Моисеев Г.К., Трусов Б.Г. Термодинамическое моделирование в высокотемпературных неорганических системах. М.: Металлургия, 1994. 352с.
- 30. Boronenkov V., Zinigrad M., Leontiev L., Pastukho V.E., Shalimov M., Shanchurov S. Phase Interaction in the Metal-Oxide Melts-Gas System. The Modeling of Structure, Properties and Processes. Heidelberg, Berlin: Springer-Verlag, 2012. 405 p. https://doi.org/10.1007/978-3-642-22377-8
- Dmitriev A.N., Vusikhis A.S., Sitnikov V.A., Leontiev L.I., Kudinov D.Z. Thermodynamic modeling of iron oxide reduction by hydrogen from the B₂O₃ CaO FeO melt in bubbled layer // Israel Journal of Chemistry. 2007. Vol. 47. No. 3–4. P. 299–302. https://doi.org/10.1560/IJC.47.3-4.299
- 32. Вусихис А.С., Леонтьев Л.И., Кудинов Д.З., Селиванов Е.Н. Термодинамическое моделирование восстановления никеля и железа из многокомпонентного силикатного расплава в процессе барботажа. Сообщение 1. Восстановитель – смесь CO-CO₂// Известия вузов. Черная металлургия. 2018. Т. 61. № 9. С. 731–736. https://doi.org/10.17073/0368-0797-2019-9-731-736

- **29.** Vatolin N.A., Moiseev G.K., Trusov B.G. *Thermodynamic Modeling in High-Temperature Inorganic Systems*. Moscow: Metallurgiya, 1994, 352 p. (In Russ.).
- 30. Boronenkov V., Zinigrad M., Leontiev L., PastukhoV.E., Shalimov M., Shanchurov S. Phase Interaction in the Metal-Oxide Melts-Gas System. The Modeling of Structure, Properties and Processes. Heidelberg, Berlin: Springer-Verlag, 2012, 405 p. https://doi.org/10.1007/978-3-642-22377-8
- Dmitriev A.N., Vusikhis A.S., Sitnikov V.A., Leontiev L.I., Kudinov D.Z. Thermodynamic modeling of iron oxide reduction by hydrogen from the B₂O₃ CaO FeO melt in bubbled layer. *Israel Journal of Chemistry*. 2007, vol. 47, no. 3–4, pp. 299–302. https://doi.org/10.1560/IJC.47.3-4.299
- Vusikhis A.S., Leont'ev L.I., Kudinov D.Z., Selivanov E.N. Thermodynamic modeling of nickel and iron reduction from multicomponent silicate melt in bubbling process. Report 1. Reducing agent a mixture of CO CO₂. *Izvestiya. Ferrous Metallurgy*. 2018, vol. 61, no 9, pp. 731–736. (In Russ.). https://doi.org/10.17073/0368-0797-2019-9-731-736

СВЕДЕНИЯ ОБ АВТОРАХ / INFORMATION ABOUT THE AUTHORS

Александр Семенович Вусихис, к.т.н., старший научный сотрудник лаборатории пирометаллургии цветных металлов, Институт металлургии УрО РАН ORCID: 0000-0002-6395-0834 E-mail: vas58@mail.ru

Леопольд Игоревич Леонтьев, академик, советник, Президиум РАН, д.т.н., профессор, Национальный исследовательский технологический университет «МИСиС», главный научный сотрудник, Институт металлургии УрО РАН ORCID: 0000-0002-4343-914X

Евгений Николаевич Селиванов, д.т.н., заведующий лабораторией пирометаллургии цветных металлов, Институт металлургии УрО РАН

Aleksandr S. Vusikhis, Cand. Sci. (Eng.), Senior Researcher of the Laboratory of Pyrometallurgy of Non-Ferrous Metals, Institute of Metallurgy, Ural Branch of the Russian Academy of Science ORCID: 0000-0002-6395-0834 E-mail: vas58@mail.ru

Leopol'd I. Leont'ev, Academician, Adviser, Russian Academy of Sciences, *Dr. Sci. (Eng.), Prof.,* National University of Science and Technology "MISIS", *Chief Researcher,* Institute of Metallurgy, Ural Branch of the Russian Academy of Science *ORCID:* 0000-0002-4343-914X

Evgenii N. Selivanov, Dr. Sci. (Eng.), Head of the Laboratory of Pyrometallurgy of Non-Ferrous Metals, Institute of Metallurgy, Ural Branch of the Russian Academy of Science

Поступила в редакцию 21.02.2021 После доработки 23.02.2021 Принята к публикации 28.06.2021

Received 21.02.2021 Revised 23.02.2021 Accepted 28.06.2021