Preview

Izvestiya. Ferrous Metallurgy

Advanced search

ON NONPARAMETRIC MODELING ALGORITHMS OF BOF PROCESS

https://doi.org/10.17073/0368-0797-2016-12-910-915

Abstract

The problem of data pre-processing in the identification of multidimensional discrete-continuous processes is considered. The main content of the paper is devoted to the method of generating working training sample from the initial one, represented by the data of the object normal operation. This step is very important in the non-parametric identification of discrete-continuous processes. Non-parametric identification algorithms belong to the class of local approximations of unknown stochastic dependencies. In nonparametric identification the step of selecting an object model to the accuracy up to the parameter vector is absent. This approach takes place in the variety of real problems, because the priori existing information is not enough to determine the reasonable parametric model structure. The procedure presented below is similar to butsrtap based on the initial training sample, which reflects the characteristics of the identified object.
Numerous computational experiments carried out by statistical modeling have showed high efficiency of generation techniques discussed below which is laid into the foundation of the adaptive system modeling. In addition, it can automatically solve the problem of restoration an unknown stochastic dependence on the definition boundary of the relevant input-output object variables. The following technics and algorithms of nonparametric recovery stochastic dependencies were used to study the oxygen-converter process. A sample of observations made from passports of 176 low carbon oxygen steel melted by the contract at JSC “EVRAZ ZSMK” oxygen-converter workshop No. 2.
New working sample which contains both the measurements and the generated data was formed according to the proposed methodology.
Using the working sample makes it possible to increase the accuracy of the training simulation in 2–3 times.

About the Authors

A. V. Medvedev
Siberian State Aerospace University named after Academician M.F. Reshetnev
Russian Federation
Dr. Sci. (Eng.), Professor of the Chair “System Analysis and Operations Research”


M. E. Kornet
Siberian State Aerospace University named after Academician M.F. Reshetnev
Russian Federation
Candidates for a degree of Сand. Sci. (Eng.) of the Chair “System Analysis and Operations Research”


E. A. Chzhan
Siberian Federal University
Russian Federation
Postgraduate of the Chair of Information Systems


References

1. Emel’yanov S.V., Korovin S.K., Rykov A.S. etc. Metody identifikatsii promyshlennykh ob”ektov v sistemakh upravleniya [Methods of identification of industrial objects in the control systems]. Kemerovo: Kuzbassvuzizdat, 2007, 307 p. (In Russ.).

2. Metody klassicheskoi i sovremennoi teorii avtomaticheskogo upravleniya. V 5 tomakh. T. 2. Statisticheskaya dinamika i identifikatsiya sistem avtomaticheskogo upravleniya [Methods of classical and modern control theory. In 5 vols. Vol. 2. Statistical dynamics and identification of automatic control systems]. Pupkov K.A., Egupov N.D. eds. Moscow: izd. MGTU im. N.E. Baumana, 2004, 640 p. (In Russ.).

3. Medvedev A.V. Osnovy teorii adaptivnykh system [Basic theory of adaptive systems]. Krasnoyarsk: izd. SibGAU, 2015, 526 p. (In Russ.).

4. Boiko V.I., Smolyak V.A. Avtomatizirovannye sistemy upravleniya tekhnologicheskimi protsessami v chernoi metallurgii: uchebnoe posobie [Automated control systems of processes in the steel industry: Tutorial]. Dneprodzerzhinsk: izd. DGTU, 1997, 576 p. (In Russ.).

5. Bannikova A.V., Korneeva A.A, Kornet M.E., Sergeeva N.A. Nonparametric stochastic object control with memory. Vestnik SibGAU. 2014, vol. 55, no. 3, pp. 28–34. (In Russ.).

6. Nadaraya E.A. Neparametricheskoe otsenivanie plotnosti veroyanostei i krivoi regressii [Non-parametric estimation of probability density and regression curve]. Tbilisi: izd. Tbil. un-ta, 1983, 194 p. (In Russ.).

7. Lapko A.V., Chentsov S.V. Neparametricheskie sistemy obrabotki informatsii [Nonparametric data processing systems]. Moscow: Nauka, 2000, 350 p. (In Russ.).

8. Epanechnikov V.A. Non-parametric estimation of a multidimensional density of probability. Teoriya veroyatnostei i ee primeneniya. 1969, vol. 14, no. 1, pp. 156–161. (In Russ.).

9. Ruban A.I. Metody analiza dannykh: uchebnoe posobie [Methods of data analysis: Tutorial]. Krasnoyarsk: IPTs KGTU, 2004, 319 p. (In Russ.).

10. Zagoruiko N.G. Prikladnye metody analiza dannykh i znanii [Applied methods of data analysis and knowledge]. Novosibirsk: izd-vo IM SO RAN, 1999, 264 p. (In Russ.).

11. Chzhan E.A. On the problem of generation of the sample in the identification of non-inertia processes. Vestnik SibGAU. 2015, vol. 16, no. 2, pp. 368–375. (In Russ.).

12. Orlov A.I. Computer statistical methods: state and prospects. Nauchnyi zhurnal KubGAU. 2014, no. 103(09), pp. 1–33. (In Russ.).

13. Pilar García Soidán, Raquel Menezes, Óscar Rubiños. Bootstrap approaches for spatial data. Stoch Environ Res Risk Assess. 2014, no. 28, pp. 1207–1219.

14. Ji Meng Loh, Michael L. Stein. Spatial bootstrap with increasing observations in a fixed domain. Statistica Sinica. 2008, no. 18, pp. 667–688.

15. Kunsch H.R. The jackknife and the bootstrap for general stationary observations. Ann. Statist. 2008, no. 17, pp. 1217–241.


Review

For citations:


Medvedev A.V., Kornet M.E., Chzhan E.A. ON NONPARAMETRIC MODELING ALGORITHMS OF BOF PROCESS. Izvestiya. Ferrous Metallurgy. 2016;59(12):910-915. (In Russ.) https://doi.org/10.17073/0368-0797-2016-12-910-915

Views: 591


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)