Preview

Izvestiya. Ferrous Metallurgy

Advanced search

ESTIMATION OF THE STRESS STATE AT ELASTIC-PLASTIC DEFORMATION OF AUSTENITIC CHROMIUM-MANGANESE HEAT-RESISTANT STEEL

https://doi.org/10.17073/0368-0797-2016-12-903-909

Abstract

The paper is devoted to the realization of the diagnostic of origin and development of the steel damage of energy equipment at microand submicrolevels. It requires taking into account special parameters, reflecting individual properties of the material, as well as the introduction into the analysis of the processes, which one can observe in the elements of the equipment, and the parameters of substructure. Such parameters are the period of crystal lattice and inner structural states of the Ist and IInd kind. The authors also give the results of the essence of stress states at elastic plastic deformation of austenitic chromiummanganese steel. It has been shown that the processes of cyclic deformation are accompanied by the oscillation of inner states in the sphere of functioning states, limited by the curve of hardening-softening. The results have been analyzed from the point of view of the establishment of the characteristic features of preliminary fracture. The article gives the complex of distinguishing features and the material parameters, under which fractions in the area of deformation among the lines of hardening and softening are not active. The paper presents the results of metallographic research of the destroyed metal, matching with the conclusions of X-ray diagnostics.

About the Authors

L. L. Lyubimova
National Research Tomsk Polytechnic University
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair “Steam Generators Design and Units”


A. A. Makeev
National Research Tomsk Polytechnic University
Russian Federation
Cand. Sci. (Eng.)


A. S. Zavorin
National Research Tomsk Polytechnic University
Russian Federation
Dr. Sci. (Eng.), Professor, Head of the Chair “Steam Generators Design and Units”


A. A. Tashlykov
National Research Tomsk Polytechnic University
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair “Steam Generators Design and Units”


References

1. Bugai N.V., Berezina T.G., Trunin I.I. Rabotosposobnost’ i dolgovechnost’ metalla energeticheskogo oborudovaniya [Metal workability and durability of energy equipment]. Moscow: Energoatomizdat, 1994, 272 p. (In Russ.).

2. Dostizheniya nauki o korrozii i tekhnologii zashchity ot nee. Korrozionnoe rastreskivanie metallov [Achievements in science on corrosion and its protection. Metal stress corrosion cracking]. Fontan M., Staehle R. eds; translated from Eng. Moscow: Metallurgiya, 1985, 488 p. (In Russ.).

3. Makeev A.A., Lyubimova L.L., Zavorin A.S., Tashlykov A.A. Structural instability in the early decomposition of supersaturated austenite solid solution. Steel in Translation. 2009, vol. 39, no. 12, pp. 1048–1055.

4. Lyubimova L.L., Makeev A.A., Tashlykov A.A., Zavorin A.S., Fisenko R.N. Assessing the life of boiler on the basis of anomalous thermal deformation of its crustal lattice. Steel in Translation. 2014, vol. 44, no. 2, pp. 117–122.

5. Lyubimova L.L., Makeev A.A., Zavorin A.S., Tashlykov A.A., Artamontsev A.I., Lebedev B.V., Fisenko R.N. Consideration of infrastructural stresses in the processes connected with the effect of structural nonuniformity on corrosion damages inflicted to heat transfer tubes. Thermal Engineering. 2014, vol. 61, no. 8, pp. 600–605.

6. Parshin A.M. Resistance to radiation swelling and embrittlement of austenite chromium-nickel dispersion-hardened solution-hardened steels and alloys with the different content of nickel. In: Sbornik nauchnykh trudov [Collected scientific papers]. Leningrad: LPI, 1984, pp. 3–13. (In Russ.).

7. Votinov S.N., Kondrat’ev V.P., Rechitskii V.N., Krasina T.A., The role of the structure in radiation strengthening and embrittlement of chromium-nickel steel and nickel alloys. Fizika i Khimiya Obrabotki Materialov. 2002, no. 1, pp. 19–26. (In Russ.).

8. Astashov S.E., Kozmanov E.A., Ogorodov A.N., Roslyakov B.F., Main results of primary post-irradiation researches of TVS reactor БН-600. In: Issledovaniya konstruktsionnykh materialov elementov aktivnoi zony bystrykh natrievykh reaktorov: Sb. nauch. tr. [Researches of structural materials of the active zone elements of the fast sodium reactors: Collected scientific papers]. Ekaterinburg: UrO RAN, 1994, pp. 48–84. (In Russ.).

9. Chuev V.V., Lanskikh V.N., Ogorodov A.N., Sheinkman A.G. Worka bility of TVS of fast reactors. In: Issledovaniya konstruktsionnykh materialov elementov aktivnoi zony bystrykh natrievykh reaktorov: Sb. nauch. tr. [Researches of structural materials of the active zone elements of fast sodium reactors: Collected scientific papers]. Ekaterinburg: UrO RAN, 1994, pp. 85–140. (In Russ.).

10. Kopel’man L.A. Soprotivlyaemost’ svarnykh uzlov khrupkomu razrusheniyu [Resistance of welded nodes to the brittle fracture]. Lenin grad: Mashinostroenie, 1978, 232 p. (In Russ.).

11. Rybin V.V. Bol’shie plasticheskie deformatsii i razrushenie metallov [High plastic deformations and metal destruction]. Moscow: Metallurgiya, 1986, 224 p. (In Russ.).

12. Wei Q., Jiao T., Ramesh K.T. Mechanical behavior and dynamic failure of high-strength ultrafine grained tungsten under uniaxial compression. Acta Mater. 2006, no. 54, pp. 77–87.

13. Vainman A.B., Shkol’nikova B.E., Smiyan O.D., Zhabrov A.V. Mechanisms and reasons of “not-traditional” superheater pipe damages of ladles of the supercritical pressure power units. Elektricheskie stantsii. 2010, no. 7, pp. 15–32. (In Russ.).

14. Khaponen N.A., Shevchenko P.N., Rassokhin G.I. Microdamage as the essence criteria of metal state and residual resource of TPP steamlines. Bezopasnost’ truda v promyshlennosti. 2004, no. 5, pp. 42–44. (In Russ.).

15. Friedel J., Gullity B.D., Crussard C. Study of the surface tension of a grain boundary in a metal as a function of the orientation of the two grains which the boundary separates. Acta Met., 1953, vol. 1, pp. 79–92.

16. Ivanova V.S. Razrushenie metallov. Dostizheniya otechestvennogo metallovedeniya [Metal destruction. Achievements of physical metallurgy in Russia]. Moscow: Metallurgiya, 1979, 168 p. (In Russ.).

17. Regel’ V.R., Slutsker A.I., Tamashevskii E.E. Kineticheskaya priroda prochnosti tverdykh tel [Kinetic nature of the strength of solids]. Moscow: Nauka, 1974, 560 p. (In Russ.).

18. Abdurashitov A.Yu., Georgiev M.N., Mezhova N.Ya., Reikhart V.A. On the methods of the essence of residual voltage in rails. Zavodskaya laboratoriya. 1991, no. 4, pp. 57–58. (In Russ.).

19. Barakhtin B.K., Makarov V.V., Petrov P.P. Distribution of a fatigue crack in low-carbon martensitic steel. Zavodskaya laboratoriya. 1991, no. 3, pp. 30–32. (In Russ.).

20. Lyubimova L.L., Makeev A.A., Zavorin A.S., Tashlykov A.A. Usage of roentgenometry in the research of structural heterogeneity of pipes of heating surfaces. Tyazheloe mashinostroenie. 2014, no. 7, pp. 18–22. (In Russ.).

21. Darkov A.V., Shpiro G.S. Soprotivlenie materialov [Material resistance]. Moscow: Al’yans, 2014, 624 p. (In Russ.).


Review

For citations:


Lyubimova L.L., Makeev A.A., Zavorin A.S., Tashlykov A.A. ESTIMATION OF THE STRESS STATE AT ELASTIC-PLASTIC DEFORMATION OF AUSTENITIC CHROMIUM-MANGANESE HEAT-RESISTANT STEEL. Izvestiya. Ferrous Metallurgy. 2016;59(12):903-909. (In Russ.) https://doi.org/10.17073/0368-0797-2016-12-903-909

Views: 618


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)