Preview

Izvestiya. Ferrous Metallurgy

Advanced search

ON MATHEMATICAL MODELING OF LAYER METALLURGICAL FURNACES AND AGGREGATES. Report 1

https://doi.org/10.17073/0368-0797-2016-9-634-638

Abstract

The authors have established the aim of mathematical modeling of gas dynamics and steady-state heat transfer in layer shaft furnaces, in which the gas stream moves to a complex system of curved channels of variable curvature and cross-sectional area. The problem of the development of complex mathematical models of layer metallurgical furnaces and units is to obtain the equations of gas flow in the moving bed, linking average speeds at space between pieces (true speed), its actual pressure and temperature, as from these values depends the intensity of physical and chemical transformations. The solution to this problem is performed using a parallel between the passage of the gas in the bed and the movement of a hypothetical fl uid, which occupies the entire volume of the device, including the amount of lump materials.

About the Authors

V. S. Shvydki
Ural Federal University named after the fi rst President of Russia B.N. Yeltsin, Ekaterinburg
Russian Federation

Dr. Sci. (Eng.), Professor of the Chair “Thermal Physics and Informatics in Metallurgy



A. R. Fatkhutdinov
Ural Federal University named after the fi rst President of Russia B.N. Yeltsin, Ekaterinburg
Russian Federation

Postgraduate of the Chair “Thermal Physics and Informatics in Metallurgy



E. A. Devyatykh
Ural Federal University named after the fi rst President of Russia B.N. Yeltsin, Ekaterinburg
Russian Federation
Postgraduate of the Chair “Thermal Physics and Informatics in Metallurgy”


T. O. Devyatykh
Ural Federal University named after the fi rst President of Russia B.N. Yeltsin, Ekaterinburg
Russian Federation
Postgraduate of the Chair “Thermal Physics and Informatics in Metallurgy”


N. A. Spirin
Ural Federal University named after the fi rst President of Russia B.N. Yeltsin, Ekaterinburg
Russian Federation
Dr. Sci. (Eng.), Professor, Head of the Chair “Thermal Physics and Informatics in Metallurgy”


References

1. Slattery John S. Momentum, energy, and mass transfer in continua. New York: McGraw-Hill, 1971, 679 p. (Russ.ed.: Slattery J.S. Teoriya perenosa impul’sa, energii i massy v sploshnykh sredakh. Moscow: Energiya, 1978, 448 p.).

2. Kitaev B.I., Yaroshenko Yu.G., Sukhanov E.L., Ovchinnikov Yu.N., Shvydkii V.S. Teplotekhnika domennogo protsessa [Heat engineering of blast furnace process]. Moscow: Metallurgiya, 1978, 248 p. (In Russ.).

3. Gordon Ya.M., Bokovikov B.A., Shvydkii V.S., Yaroshenko Yu.G. Teplovaya rabota shakhtnykh pechei i agregatov s plotnym sloem [Heat work of shaft furnaces and aggregates with a dense layer]. Moscow: Metallurgiya, 1989, 120 p. (In Russ.).

4. Gordon Ya.M., Maksimov E.V., Shvydkii V.S. Mekhanika dvizheniya materialov i gazov v shakhtnykh pechakh [Mechanics of movement of materials and gases in blast furnaces]. Alma-Ata: Nauka, 1989, 144 p. (In Russ.).

5. Lykov A.V. Teplomassoobmen (spravochnik) [Heat and mass transfer (handbook)]. Moscow: Energiya, 1972, 560 р. (In Russ.).

6. Smirnov V.I. Kurs vysshei matematiki: T. 1 [Course of higher mathe matics. Vol. 1]. Moscow: Nauka, 1955, 480 p. (In Russ.).

7. Myshkis A.D. Lektsii po vysshei matematike [Lectures on higher mathematics]. Moscow: Nauka, 1969, 640 p. (In Russ.).

8. Shvydkii V.S. Ladygichev M.G., Shavrin V.S. Matematicheskie metody teplofi ziki: Uchebnik dlya vuzov [Mathematical models of thermal physics: Textbook for universities]. Moscow: Mashinostroenie, 2001, 232 p. (In Russ.).

9. Serrin James. Mathematical Principles of Classical Fluid Mechanics. Series: Encyclopedia of Physics. Springer-Verlag OHG. Berlin – Göttingen – Heidelberg, 1959. (Russ.ed.: Serrin J. Matematicheskie osnovy klassicheskoi mekhaniki zhidkosti. Moscow: IL, 1963, 256 p.)

10. Shvydkii V.S., Yaroshenko Yu.G., Gordon Ya.M., Shavrin V.S., Noskov A.S. Mekhanika zhidkosti i gaza: Uchebnoe posobie dlya vuzov [Fluid mechanics: Manual for universities]. Shvydkii V.S. ed. Moscow: IKTs “Akademkniga”, 2003, 464 p. (In Russ.).

11. Schlichting Herrmann. Grenzschicht-Theorie. Verlag G. Braun, Karlsruhe, 1965, 736 s. (Russ.ed.: Schlichting H. Teoriya pogranichnogo sloya. Moscow: Nauka, 1969, 743 p.).

12. Prager S. Viscous fl ow through porous media. Phys. of Fluids. 1961, no. 4, pp. 1477–1485.

13. Gol’dshtik M.A. Protsessy perenosa v zernistom sloe [Transport processes in the granular layer]. Novosibirsk: In-t teplofi ziki SO AN SSSR, 1984, 164 p. (In Russ.).

14. Bogdandi L., Engell H.-J. Die Reduktion der Eisenerze. Duesseldorf, 1967. 539 p. (Russ. ed.: Bogdandi L., Engell H.-J. Vosstanovlenie zheleznykh rud. Moscow: Metallurgiya, 1971, 519 p.).

15. Brauer H. Resistance law for irrigated vertical columns with countercurrent gas flow. Chem. Ing. Tech. 1960, vol. 32, pp. 585–590.

16. Eshar R., Bredegeft R., Mavrodis M. etc. Gas dynamics and heat engineering of blast furnace process. Chernye metally. 1971, no. 12, pp. 1–40. (In Russ.).


Review

For citations:


Shvydki V.S., Fatkhutdinov A.R., Devyatykh E.A., Devyatykh T.O., Spirin N.A. ON MATHEMATICAL MODELING OF LAYER METALLURGICAL FURNACES AND AGGREGATES. Report 1. Izvestiya. Ferrous Metallurgy. 2016;59(9):634-638. (In Russ.) https://doi.org/10.17073/0368-0797-2016-9-634-638

Views: 553


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)