Preview

Izvestiya. Ferrous Metallurgy

Advanced search

INFLUENCE OF STACKING-FAULT ENERGY ON ABRASIVE WEAR RESISTANCE OF CASTINGS FROM Fe – 12Mn – 1,2C STEEL COOLED WITH DIFFERENT RATES

https://doi.org/10.17073/0368-0797-2016-9-603-609

Abstract

The research group has investigated the infl uence of the cooling rate of a casting on the coefficient of abrasive wear resistance and has proved that wear resistance is determined by the thickness of the layer hardened by twinning-induced plasticity, which is formed on the wearing surface. It was found that the maximum thickness of the hardened layer is formed both at high and at low cooling rates, which is connected with the decrease in the value of the stacking-fault energy (SFE). This value, in its turn, varies depending on the content of manganese, chromium and silicon. At medium cooling rate the achieved doping level of austenite results in the increase of the SFE value. It also hampers the process of twinning-induced plasticity (TWIP) and results in forming of a hardened layer of minimum thickness or this layer is not formed at all. 

About the Authors

K. N. Vdovin
Magnitogorsk State Technical University named after G.I. Nosov, Magnitogorsk
Russian Federation
Dr. Sci. (Eng.), Professor, Head of the Chair “Materials Science and Foundry”


D. A. Gorlenko
Magnitogorsk State Technical University named after G.I. Nosov, Magnitogorsk
Russian Federation
Cand. Sci. (Eng.), Assistant of the Chair “Materials Science and Foun dary”


N. A. Feoktistov
Magnitogorsk State Technical University named after G.I. Nosov, Magnitogorsk
Russian Federation
Cand. Sci. (Eng.), Senior Lecturer of the Chair “Materials Science and Foundary”


References

1. Korshunov L.G. Structure transformations during friction and wear resistance of austenitic steels. Fizika metallov i metallovedenie. 1992, no. 8, pp. 3–21. (In Russ.).

2. Teplov V.A., Korshunov L.G., Shabashov V.A., Kuznetsov R.I., Pilyugin V.P., Tupitsa D.I. Structural transformations of high-manganese austenitic steels during deformation by shear under pressure. Physics of Metals and Metallography. 1988, vol. 66, no. 3, pp. 135–143.

3. Astafurova E.G., Tukeeva M.S., Maier G.G., Mel’nikov E.V., Koshovkina V.S., Kozlova T.A. The effect of stacking-fault energy on the peculiarities of mechanical twinning development in high-manganese austenitic Fe-Mn-Al-C steels under high-pressure torsion. Pis’ma o materialakh. 2013, vol. 3, pp. 198–201. (In Russ.).

4. Shtremel’ M.A., Kovalenko I.A. On the mechanism of hardening of Hadfield steel. Fizika metallov i metallovedenie. 1987, vol. 63, no. 1, pp. 172–180. (In Russ.).

5. Cherdyntsev V.V., Pustov L.Yu., Kaloshkin S.D., Tomilin I.A., Shelekhov E.V., Laptev A.I., Baldokhin Yu.V., Estrin E.I. Phase transformations during deformation of Fe-Ni and Fe-Mn alloys produced by mechanical alloying. The Physics of Metals and Metallography. 2007, vol. 104, Issue 4, pp. 408 – 414. DOI: 10.1134/ S0031918X07100109.

6. Tereshchenko N.A., Uvarov A.I., Vil’danova N.F. The role of deformation twins in the formation of the mechanical properties of CrMn-based austenitic steels. Physics of Metals and Metallography. 2003, vol. 95, no. 4, pp. 371–378.

7. Pustov L.Yu., Estrin E.I., Kaloshkin S.D., Cherdyntsev V.V., Shelekhov E.V., Tomilin I.A. Phase transformations in iron-rich Fe-Mn alloys obtained by mechanical alloyin. Physics of Metals and Metallography. 2003, vol. 95, no. 6, pp. 575–583.

8. Grässel O., Frommeyer G., Derder C., Hofmann H. Phase Transformations and Mechanical Properties of Fe-Mn-Si-Al TRIP-Steels. Journal de Physique IV. 1997, vol. 07 (C5), pp. C5-383–C5-388. DOI: 10.1051/jp4:1997560.

9. Kriangyut Phiu-on. Deformation mechanisms and mechanical properties of hot rolled Fe-Mn-C-(Al)-(Si) austenitic steels: Dissertation vorgelegt von Master of Engineering. Samutprakan, Thailand, 2008, 154 p.

10. Medvedeva N.I., Park M.S., Van Aken D.C., Medvedeva J.E. Firstprinciples study of Mn, Al and C distribution and their effect on stacking fault energies in fcc Fe. Journal of Alloys and Compounds. 2014, vol. 582, pp. 475–482. DOI: 10.1016/j.jallcom.2013.08.089.

11. Atef Saad Hamada. Manufacturing, mechanical properties and corrosion behavior of high-Mn TWIP steels. Oulu: Oulu University press, 2007, 54 p.

12. Vdovin K.N., Feoktistov N.A., Sinitskii E.V., Gorlenko D.A., Durov N.M. Production of high-manganese steel in arc furnaces. Part 1. Steel in Translation. 2015, vol. 45, no. 10, pp. 729-732. DOI: 10.3103/S0967091215100186.

13. Pierce D.T., Jiménez J.A., Bentley J., Raabe D., Oskay C., Wittig J.E. The infl uence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe–Mn–(Al–Si) steels investigated by experiment and theory. Acta Materialia. 2014, vol. 68, pp. 238–253. DOI: 10.1016/j.actamat.2014.01.001.

14. Mazancová Eva, Schindler Ivo, Mazanec Karel. Stacking fault energy analysis from point of view of plasticdeformation response of the twip and triplex alloys. In.: Zborník z 18. medzinárodná konferencia metalurgie a materiálov. Ostrava: TANGER, 2009, pp. 32–39.

15. Saeed-Akbari A., Mosecker L., Schwedt A., Bleck W. Characterization and Prediction of Flow Behavior in High-Manganese Twinning Induced Plasticity Steels: Part I. Mechanism Maps and Work-Hardening Behavior. Metallurgical and Materials Transactions A. 2012, vol. 43, Issue 5, pp. 1688–1704. DOI: 10.1007/s11661-011-0993-4.

16. Saeed-Akbari A., Imlau J., Prahl U., Bleck W. Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels. Metallurgical and Materials Transactions A. 2009, vol. 40, Issue 13, pp. 3076-3090. DOI: 10.1007/s11661-009-0050-8.

17. Volosevich P. Yu., Gridnev V. N., Petrov Yu. N. Effect of manganese on the stacking-fault energy in the iron-manganese alloys. Fizika metallov i metallovedenie. 1976, vol. 42, no. 2, pp. 372–376. (In Russ.).

18. Vdovin K.N., Gorlenko D.A., Nikitenko O.A., Feoktistov N.A. Investigation of the effect of cooling rate during crystallization on austenite grain size of the cast steel 110G13L. Mezhdunarodnyi nauchnoissledovatel’skii zhurnal. 2015, no. 10-2 (41), pp. 28–31. (In Russ.).

19. Vdovin K.N., Gorlenko D.A., Feoktistov N.A. Study of the effect of cooling rate in interval of excessive phases generating on cast Hadfield steel microstructure. In: Metallurgiya: tekhnologii, innovatsii, kachestvo. “Metallurgiya – 2015”. Trudy XIX Mezhdunarodnoi nauchno-prakticheskoi konferentsii 15 – 16 dekabrya 2015 g., Novokuznetsk [Metallurgy: technologies, innovation, quality. “Metallurgy – 2015”. Proceedings of the XIX Int. scientific-practical conference on December 15 – 16, 2015, Novokuznetsk]. Novokuznetsk: izd. SibGIU, 2015, pp. 125–129. (In Russ.).

20. Kolokol’tsev V.M., Dolgopolova L.B., Mulyavko N.M. Effect of chemical composition on the structure and properties of chromium-manganese austenitic steels. Liteinye protsessy. 2003, no. 3, pp. 31–36. (In Russ.).


Review

For citations:


Vdovin K.N., Gorlenko D.A., Feoktistov N.A. INFLUENCE OF STACKING-FAULT ENERGY ON ABRASIVE WEAR RESISTANCE OF CASTINGS FROM Fe – 12Mn – 1,2C STEEL COOLED WITH DIFFERENT RATES. Izvestiya. Ferrous Metallurgy. 2016;59(9):603-609. (In Russ.) https://doi.org/10.17073/0368-0797-2016-9-603-609

Views: 633


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)