Preview

Izvestiya. Ferrous Metallurgy

Advanced search

MATHEMATICAL DESIGN OF THE SHAFT FURNACES WITH MATERIALS MELTING

https://doi.org/10.17073/0368-0797-2016-6-424-430

Abstract

The authors have formed the objective of stationary heat exchange in shaft grate-fired furnaces in which the reason of processed materials movement is their melting. In this case the energy transfer specific feature manifests itself, namely the process intensity is largely determined by the speed of material flow, which in turn, substantially depends on particles melting tempo. Since iterative approach is the only way for reconciliation of the contradictions, in mathematical formulation of the tasks in general it is necessary to rely on idealization of certain phenomena. In particular, certain idealizations are necessary due to insufficient number of theoretical explanations of certain issues, i.e., mathematical theory of solid materials movement in the shaft furnaces. The vortexfree flow was used at description of layer gas mechanics. 

About the Authors

V. S. Shvydkii
Ural Federal University named after the first President of Russia B.N. Yeltsin Ekaterinburg, Russia
Russian Federation

Dr. Sci. (Eng.), Professor of the Chair “Thermal Physics and Informatics in Metallurgy”



A. R. Fatkhutdinov
Ural Federal University named after the first President of Russia B.N. Yeltsin Ekaterinburg, Russia
Russian Federation

Postgraduate of the Chair “Thermal Physics and Informatics in Metallurgy”



E. A. Devyatykh
Ural Federal University named after the first President of Russia B.N. Yeltsin Ekaterinburg, Russia
Russian Federation

Postgraduate of the Chair “Thermal Physics and Informatics in Metallurgy”



T. O. Devyatykh
Ural Federal University named after the first President of Russia B.N. Yeltsin Ekaterinburg, Russia
Russian Federation

Postgraduate of the Chair “Thermal Physics and Informatics in Metallurgy”



N. A. Spirin
Ural Federal University named after the first President of Russia B.N. Yeltsin Ekaterinburg, Russia
Russian Federation

Dr. Sci. (Eng.), Professor, Head of the Chair “Thermal Physics and Informatics in Metallurgy”



References

1. Kitaev B.I., Timofeev V.N., Bokovikov B.A. Teploi massoobmen v plotnom sloe [Heat and mass exchange in dense layer]. Moscow: Metallurgiya, 1972, 432 p. (In Russ.).

2. Kitaev B.I., Yaroshenko Yu.G., Sukhanov E.L. etc. Teplotekhnika domennogo protsessa [Thermal technology of blast furnace process]. Moscow: Metallurgiya, 1978, 218 p. (In Russ.).

3. Gordon Ya.M., Bokovikov B.A., Shvydkii V.S. etc. Teplovaya rabota shakhtnykh pechei i agregatov s plotnym sloem [Thermal work of shaft furnaces and units with dense layer]. Moscow: Metallurgiya, 1989, 121 p. (In Russ.).

4. Shvydkii V.S., Spirin N.A., Lodygichev M.G. etc. Elementy teorii sistem i chislennye metody modelirovaniya protsessov teplomassoperenosa [Elements of system theory and digital methods of thermal an mass transfer modeling]. Moscow: Intermet Inzhiniring, 1999, 520 p. (In Russ.).

5. Gordon Ya.M., Maksimov E.V., Shvydkii V.S. Mekhanika dvizheniya gazov i materialov v shakhtnykh pechakh [Mechanics of gas and materials flow in shaft furnaces]. Alma-Ata: Nauka, 1989, 144 p. (In Russ.).

6. Shvydkii V.S., Ladygichev M.G., Shavrin V.S. Matematicheskie metody teplofiziki: Uchebnik dlya vuzov [Mathematic methods in thermal physics: Textbook for universities]. Moscow: Teplotekhnik, 2005, 232 p. (In Russ.).

7. Tsymbal V.P. Matematicheskoe modelirovanie slozhnykh sistem v metallurgii [Mathematic modeling of complex systems in metallurgy]. Kemerovo, Moscow: Izdatel’skoe ob”edinenie “Rossiiskie universitety”: Kuzbassvuzizdat, ASTIII, 2006, 431 p. (In Russ.).

8. Arutyunov V.A., Bukhmirov V.V., Krupennikov S.A. Matematicheskoe modelirovanie teplovoi raboty promyshlennykh pechei: Ucheb. posobie dlya vuzov [Mathematic modeling of thermal work of industrial furnaces: Textbook for universities]. Moscow: Metallurgiya, 1990, 239 p. (In Russ.).

9. Biot Maurice A. Variational principles in heat transfer: a unified Lagrangian analysis of dissipative phenomena. Oxford: Clarendon Press, 1970. (Russ.ed.: Biot M. Variatsionnye printsipy v teorii teploobmena. Moscow: Energiya, 1975, 208 p.).

10. Turchak L.I., Plotnikov P.V. Osnovy chislennykh metodov: Uchebnik dlya vuzov [Basics of numerical methods: Textbook for universities]. Moscow: Fizmatlit, 2003, 304 p. (In Russ.).

11. Volkov E.A. Chislennye metody: Uchebnik dlya vuzov [Numerical methods: Textbook for universities]. Moscow: Lan’, 2004, 256 p. (In Russ.).

12. Samarskii A.A. Vvedenie v chislennye metody: Uchebnik dlya vuzov [Introduction in numerical methods: Textbook for universities] Moscow: Lan’, 2009, 288 p. (In Russ.).

13. Verzhbitskii V.M. Osnovy chislennykh metodov [Basics of numerical methods, 3rd edition]. Moscow: Vysshaya shkola, 2009, 848 p. (In Russ.).

14. Shvydkii V.S., Dzyuzer V.Ya. Metody chislennogo resheniya inzhenernykh zadach: Uchebn. posobie [Methods of numerical solving of engineering tasks: Manual]. Ekaterinburg: Iz-vo AMB, 2010, 400 p. (In Russ.).

15. Patankar Suhas V. Numerical Heat Transfer and Fluid Flow. New York: Hemisphere Publishing Corporation, 1980. (Russ.ed.: Patankar S. Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti. Moscow: Energoatomizdat, 1984, 152 p.).


Review

For citations:


Shvydkii V.S., Fatkhutdinov A.R., Devyatykh E.A., Devyatykh T.O., Spirin N.A. MATHEMATICAL DESIGN OF THE SHAFT FURNACES WITH MATERIALS MELTING. Izvestiya. Ferrous Metallurgy. 2016;59(6):424-430. (In Russ.) https://doi.org/10.17073/0368-0797-2016-6-424-430

Views: 706


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)