FUNDAMENTAL INVESTIGATIONS AS THE BASIS OF CREATION OF NEW MATERIALS AND TECHNOLOGIES IN METALLURGY. PART 2. POWDER NANOMATERIALS
https://doi.org/10.17073/0368-0797-2016-5-306-313
Abstract
The paper presents a review of the investigation results in the field of nanopowder and consolidated powder nanomaterials. The features of the various powder fabrication methods are described and analyzed, as well as the produced nanopowders properties. The different methods of nanopowder consolidation (consolidation, sintering, sintering under pressure) are considered. The properties of such consolidated nanomaterials are listed and some perspective directions of their usage (as the engineering, functional and high-energetic materials) are pointed out.
Keywords
About the Authors
L. I. Leont’evRussian Federation
Dr. Sci. (Eng.), Professor, Academician, Adviser of the Russian Academy of Sciences, Chief Researcher
M. I. Alymov
Russian Federation
orresponding Member of Russian Academy of Sciences, Dr. Sci. (Eng.), Professor, Director of ISMAN
References
1. Kuznetsov N.T., Novotortsev V.M., Zhabrev V.A., Margolin V.I. Osnovy nanotekhnologii [Basics of nanotechnology]. Moscow: BINOM. Laboratoriya znanii, 2014, 397 p. (In Russ.).
2. Alymov M.I. Poroshkovaya metallurgiya nanokristallicheskikh materialov [Powder metallurgy of nanocrystalline materials]. Moscow: Nauka, 2007, 169 p. (In Russ.).
3. Alymov M.I., Shustov V.S., Ustyukhin A.S., Evstratov E.V. Correlation between the quality of nanopowders and productivity rate for fabrication technology of them. Kompozity i nanostruktury. 2012, no. 3, pp. 5–9. (In Russ.).
4. Leont’ev L.I., Grigorovich K.V., Kostina V.M. Fundamental investigations as the basis of creation of new materials and technologies in metallurgy. Part 1. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2016, vol. 59, no. 1, pp. 11–22. (In Russ.).
5. Zakorzhevskii V.V., Borovinskaya I.P. Combustion Synthesis of Submicron AlN Particles. Inorganic Materials. 2015, vol. 51, pp. 566–571.
6. Chevykalova L.A., Kelina I.Yu., Mikhal’chik I.L., Plyasunkova L.A., Arakcheev A.V., Zakorzhevskii V.V., Loryan V.E. Ceramic material on the base of domestic silicon nitride composite powders obtained by self-propagating high-temperature suspension (SHS) method. Novye ogneupory. 2014, no. 10, pp. 31–36. (In Russ.).
7. Borovinskaya I.P., Ignat’eva T.I., Semenova V.N., E. A. Chemagina E.A. Aluminum oxynitride by SHS in chemical furnace. International Journal of Self-Propagating High-Temperature Synthesis. 2015, vol. 24, no. 3, pp. 142–147.
8. Borovinskaya I.P., Barinova T.V., Ignat’eva T.I. SHS of ultrafine and nanosized Si3N4 powders. Influence of inorganic and organic additives on product microstructure, morphology and phase composition. Nanotechnologies in Russia. 2015, vol. 10, Issue 9, pp. 763–776.
9. Mukasyan A.S., Rogachev A.S., Aruna S.T. Combustion synthesis in nanostructured reactive systems. Advanced Powder Technology. 2015, vol. 26, Issue 3, pp. 954–976.
10. Nanostructured materials: processing, properties and potential applications. Koch Carl C. ed. Norwich, NY: Noyes Publications, 2002, 612 p.
11. Hayashi K., Eto H. Pressure-Sintering of iron, cobalt, nickel and copper ultrafine powders and the crystal grain size and hardness of the compacts. J. Japan Inst. Metals. 1989, vol. 53, no. 2, pp. 221–226.
12. Berbentsev V.D., Alymov M.I., Bedov S.S. Nanopowder consolidation by gas extrusion method. Rossiiskie nanotekhnologii. 2007, no. 7–8, pp. 116–120. (In Russ.).
13. Vaganov V.E., Aborkin A.V., Alymov M.I., Berbentsev V.D. State of the Art and the Prospects of High-Temperature Gas Extrusion to Produce Thin-section Rods Made of Hard-to-Deform, Including Nanostructured, Alloys. Russian Metallurgy (Metally). 2015, no. 9, pp. 732–738.
14. Langlois C., Hytch M.J., Langlois P., Lartigue-Korinek S., and Champion Y. Synthesis and microstructure of bulk nanocrystalline copper. Metallurgical and Materials Transactions A. 2005, vol. 36A, pp. 3451–3460.
15. Bazhin P.M., Stolin A.M., Alymov M.I., Chizhikov A.P. Peculiarities of the production of elongated items from a ceramic material with nanoscale structure by the SHS extrusion method. Inorganic Materials: Applied Research. 2015, vol. 6, no. 2, pp. 187–192.
16. Griffith A.A. The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. (London). 1921, A221, pp. 163–198.
17. Lashmore D.S., Jesser W.A., Schladitz D.M., Schladitz H.J., Wilsdorf H.G.F. Microstructural investigation of polycrystalline iron whiskers J. Appl. Phys. 1977, vol. 48, pp. 478–481.
18. Lyakishev N.P., Alymov M.I. Poluchenie i fiziko-mekhanicheskie svoistva ob”emnykh nanokristallicheskikh materialov [Production and physic-mechanical properties of bulk nanocrystalline materials]. Moscow: ELIZ. 2007, 148 p. (In Russ.).
19. Solntsev K.A. IMET of RAS: investigations in nanomaterials and nanotechnologies. Nanotechnologies. Ecology. Production. 2010, no. 4, pp. 4–6.
20. Andrievski R.A., Khatchoyan A.V. Nanomaterials in extreme environments. Fundamentals and applications. Springer Series in Materials Science, 2016, vol. 230.
21. Tsvetkov Yu.V., Samokhin A.V., Nikolaev A.V. Plasma processes in metallurgy and material treatment. In: Institut metallurgii i materialovedeniya im. A.A. Baikova RAN – 75 let. Sb. nauchnykh trudov [Institute metallurgy and material science A.A. Baikov RAS – 75 years. Proc.]. Solntsev K.A. ed. Moscow: Interkontakt Nauka, 2013, 792, pp. 512–528. (In Russ.).
22. Zaitsev A.A., Vershinnikov V.I., Konyashin I., Levashov E.A., Borovinskaya I.P., Ries B. Cemented carbides from WC powders obtained by the SHS method. Materials Letters. 2015, vol. 158, no. 1, pp. 329–332.
23. Shcherbakov V.A., Gryadunov A.N., Sachkova N.V., Samokhin A.V. Combustion synthesis of composites based on titanium and chromium borides. Pis’ma o materialakh. 2015, vol. 5, Issue 1, pp. 20–23. (In Russ.).
24. Alymov M.I., Evstratov E.V., Ankudinov A.B., Zelenskii V.A., Golosova O.A., Kolobova A.Yu. Preparation, structure and properties of the porous materials based on titanium. FKhOM. 2015, no. 12, pp. 70–75. (In Russ.).
25. Alymov M.I., Bakunova N.V., Barinov S.M., Belunik I.A., Fomin A.S., Ievlev V.M., Soldatenko S.A. Specific features of the densification of hydroxyapatite nanopowders upon pressing. Nanotechnologies in Russia. 2011, vol. 6, Issue 5–6, pp 353–356.
26. Mukasyan A.S., Lin Ya-Cheng, Rogachev A.S., Moskovskikh D.O. Direct combustion synthesis of silicon carbide nanopowder from the elements. Journal of the American ceramic society. 2013, vol. 96, Issue 1, pp. 111–117.
27. Kurchatov I.M., Laguntsov N.I., Uvarov V.I., Kurchatova O.V. Asymmetric gas transport: composite porous ceramic membranes. International Journal of Applied Engineering Research. 2015. vol. 10, no. 20, pp. 40939-40945.
28. Shevchenko V.Ya., Mackay A.L. Geometrical principles of the self-assembly of nanoparticles. Glass physics & Chemistry. 2008, vol. 34, no. 1, pp. 8–15.
29. Zaitsev A.A., Sentyurina Zh.A., Pogozhev Yu.S., Levashov E.A., Sanin V.N., Yukhvid V.I., Andreev D.E., Mikhailov M.A., Kaplanskii Yu.Yu. Fabrication of cast electrodes from nanomodified nickel aluminide-based high-boron alloy to fabricate spherical powders using the plasma rotating electrode process. Izvestiya VUZov. Tsvetnaya metallurgiya. 2015, no. 4, pp. 15–24. (In Russ.).
30. Zelepugin S.A., Dolgoborodov A.Yu., Ivanova O.V., Zelepugin A.S. Udarno-volnovoi sintez v tverdykh smesyakh. Monografiya [Shockwave sintering in solid mixtures. Monograph]. Tomsk: Izd-vo Instituta optiki atmosfery SO RAN, 2012, 230 p. (In Russ.).
31. Imkhovik N.A., Selivanov V.V., Simonov A.K., Sergeeva A.I., Yashin V.B. About the abroad development research of new “HighDensity Reactive Materials” and its appliance in high-lethality ammunition. Vooruzhenie i ekonomika. 2014, no. 1 (26), pp. 53–63. (In Russ.).
32. Ul’tradispersnye i nanorazmernye poroshki: sozdanie, stroenie, proizvodstvo i primenenie [Ultrafine and nanosized powders: synthesis, structure, production and application]. Buznik V.M. ed. Tomsk: Izd-vo NTL, 2009, 192 p. (In Russ.).
33. Advanced Energetic Materials. Committee on Advanced Energetic Materials and Manufacturing Technologies. National Research Council. 2004.
34. Ames R.G. A standardized evaluation technique for reactive warhead fragments. Proceedings of the 23-rd International Symposium on Ballistics, Tarragona, Spain, 16–20 April, 2007.
35. Wang Haifu, Liu Zongwei, Wang Hui, Yu Weiming. Impact initiated characteristics of reactive material fragments. Proceedings of the 2007 International Autumn Seminar on Propellants, Explosives and Pyrotechnics. Xi’an, Shaanxi, China, October 23–26, 2007.
36. Rosencrantz S.D. Characterization and modeling methodology of polytetrafluoroethylene based reactive materials for the development of parametric models. Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering, B.S., University of Washington, 1998. Wright State University, 2007.
37. Mr. Steven Nicolich Chief, Presented by: Dr. Rao Surapaneni, Energetic materials to meet warfighter requirements: An overview of selected US Army RDECOM-ARDEC Energetic Materials Programs. The Proceedings of the 42nd Annual Armament Systems: Gun and Missile Systems Conference, 2007.
38. Daniels A., Baker E., Ng K. A unitary demolition warhead. Mines, demolition and non-lethal weapons conference, 2003.
39. Gotzmer C., Amato B., Kim S. Applications overview of reactive materials. National Capital Region Energetics Symposium, La Plata, MD, April 27–28, 2009.
40. Zhang F., Donahue L., Wilson W.H. The Effect of charge reactive structural metal cases on air blast. 14th IDS, 2010.
41. Bless S., Russell R., Pantoya M. Advanced energetic materials for agent defeat: Impact-driven reactions in biocidal reactive materials for WMD applications. Annual Progress Report – HD-TRA1-08-1-0013, 2009.
42. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Prospective applications of carbon-containing nanoparticles in binders for polymer composite materials. Nanotechnologies in Russia. 2013, vol. 8, no. 3–4, pp. 163–185.
Review
For citations:
Leont’ev L.I., Alymov M.I. FUNDAMENTAL INVESTIGATIONS AS THE BASIS OF CREATION OF NEW MATERIALS AND TECHNOLOGIES IN METALLURGY. PART 2. POWDER NANOMATERIALS. Izvestiya. Ferrous Metallurgy. 2016;59(5):306-313. (In Russ.) https://doi.org/10.17073/0368-0797-2016-5-306-313