Preview

Izvestiya. Ferrous Metallurgy

Advanced search

INCREASE OF FATIGUE LIFE OF STEELS OF DIFFERENT STRUCTURE CLASSES BY ELECTRON BEAM TREATMENT

https://doi.org/10.17073/0368-0797-2016-4-261-263

Abstract

The methods of modern materials science to quantitative changes in structural and phase states and dislocation substructure of steels of different structural classes (08Cr18Ni10Ti, 20Cr13, 20Cr23Ni18, E76F), under graver-electron-beam processing, the energy density 10 – 40 J/cm2 have been established. The gradient type has revealed the nature of changes in structural and phase states in steels after electronbeam processing, destroyed during high-cycle fatigue. The authors have identified and analyzed the main factors and mechanisms that determine the fatigue life of steels after electron-beam processing up to 3.5 times. The article presents the results of the change in the structural-phase states and faulty substructure of the steel due to grinding grain and subgrain structure (for 20Cr13 and 20Cr23Ni18 steels), suppression of the processes leading to the formation of zones, potential for microcracks formation (for 20Cr13 steel), the formation of needle-profile interface leading to a more homogeneous plastic flow in the substrate (for E76F steel).

About the Author

S. V. Vorob’ev
Siberian State Industrial University, Novokuznetsk, Russia
Russian Federation

Cand. Sci. (Eng.), Assist. Professor, Candidates for a degree of Dr. Sci. (Eng.) of the Chair of Physics named after V.M. Finkel



References

1. Peretyat’ko V.N., Temlyantsev M.V., Filippova M.V. Razvitie teorii i praktiki metallurgicheskikh tekhnologii: monografiya: v 3-kh t. T. 2. Plastichnost’ i razrushenie stali v protsessakh nagreva i obrabotki davleniem [Theory and practice development of metallurgical technologies: monograph: in three volumes. Vol. 2. Plasticity and steel destruction in heat processes and forming operations]. Peretyat’ko V.N., Protopopov E.V., Selyanin I.F. eds. Moscow: Teplotekhnik, 2010, 352 p. (In Russ.).

2. Kozyrev N.A., Protopopov E.V., Aizatulov R.S., Boikov D.V. New production technology for rail steel. Steel in Translation. 2012, vol. 42, no. 2, pp. 110–113.

3. Sosnin O.V., Gromov A.V., Ivanov Y.F., Konovalov S.V., Gromov V.E., Kozlov E.V. Control of austenite steel fatigue strength. International journal of fatigue. 2005, vol. 27, no. 10–12, pp. 1186– 1191.

4. Konovalov S.V., Atroshkina A.A., Ivanov Yu.F., Gromov V.E. Evolution of dislocation substructures in fatigue loaded and failed stainless steel with the intermediate electropulsing treatment. Materials Science and Engineering: A. 2010, vol. 527, no. 12, pp. 3040–3043.

5. Fang Y., Chen X, Madigan B., Cao H., Konovalov S. Effects of strain rate on the hot deformation behavior and dynamic recrystallization in China low activation martensitic steel. Fusion Engineering and Design. 2016, vol. 103, pp. 21–30.

6. Itin V.I., Koval’ B.A., Koval’ N.N., Lykov S.V., Mesyats G.A., Proskurovskii D.I., Rotshtein V.P., Chukhlantseva I.S. Surface strain-hardening of iron alloys with an intense pulsed electron beam. Soviet Physics Journal. 1985, vol. 28, Is. 6, pp. 470–475.

7. Ivanov Yu., Rotshtein V., Proskurovsky D., Orlov P., Polestchenko K., Ozur G., Goncharenko I. Pulsed electron-beam treatment of WC-TiC-Co hard-alloy cutting tools: wear resistance and microstructural evolution. Surface and coating technology Surface and Coating. 2000, vol. 125, pp. 251–256.

8. Ivanov Yu.F., Gromov V.E., Konovalov S.V. Electron-beam modification of the pearlite steel. Arabian journal for science and engineering. 2009, vol. 34, no 2A, pp. 219 – 229.

9. Gromov V.E., Ivanov Yu.F., Glezer A.M., Konovalov S.V., Alsaraeva K.V. Structural evolution of silumin treated with a high-intensity pulse electron beam and subsequent fatigue loading up to failure. Bulletin of the Russian Academy of Sciences: Physics. 2015, vol. 79, Issue 9, pp. 1169–1172.

10. Ivanov Yu., Alsaraeva K., Gromov V., Konovalov S., Semina O. Evolution of Al-19.4 Si alloy surface structure after electron beam treatment and high cycle fatigue. Materials science and technology. 2015, vol. 31, no 13A, pp. 1523–1529.

11. Gromov V.E., Ivanov Yu.F., Konovalov S.V., Vorob’ev S.V., Sizov V.V. Phenomenon of steel fatigue life increase under low-energy electron beams (Certificate no. 460). In: Nauchnye otkrytiya – 2014. Sbornik kratkikh opisanii nauchnykh otkrytii, nauchnykh idei, nauchnykh gipotez. [Collected papers “Scientific discoveries – 2014”. Collected short descriptions of scientific discoveries, scientific ideas, scientific hypothesis]. Moscow: Izd-vo RAEN, 2015, pp. 5–7. (In Russ.).

12. Ivanov Yu. F., Koval N.N., Gorbunov S.V., Vorobyov S.V., Konovalov S.V., Gromov V.E. Multicyclic fatigue of stainless steel treated by a high-intensity electron beam: surface layer structure. Russian physics journal. 2011, vol. 54, no. 5, pp. 575 – 583.

13. Gromov V.E., Ivanov Yu.F., Vorobiev S.V., Konovalov S.V. Fatigue of steels modified by high intensity electron beams. Cambridge: Cambridge International Science Publishing Ltd, 2015, 272 p.

14. Grishunin V.A., Gromov V.E., Konovalov S.V., Ivanov Y.F., Teresov A.D. Evolution of the phase composition and defect substructure of rail steel subjected to high-intensity electron-beam treatment. Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques. 2013, vol. 7, no. 5, pp. 990–995.

15. Gromov V.E., Ivanov Yu.F., Grishunin V.A., Raikov S.V., Konovalov S.V. Scale levels of structural phase states and fatigue life of rail steel after electron-beam treatment. Uspekhi fiziki metallov. 2013, vol. 14, no. 1, pp. 67–83. (In Russ.).


Review

For citations:


Vorob’ev S.V. INCREASE OF FATIGUE LIFE OF STEELS OF DIFFERENT STRUCTURE CLASSES BY ELECTRON BEAM TREATMENT. Izvestiya. Ferrous Metallurgy. 2016;59(4):261-263. (In Russ.) https://doi.org/10.17073/0368-0797-2016-4-261-263

Views: 597


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)