EFFECT OF STRESS STATE ON THE STRUCTURE AND PROPERTIES OF CONSTRUCTIONS OF STEELS AND ALLOYS AT WELDING
https://doi.org/10.17073/0368-0797-2016-4-251-255
Abstract
The paper presents the analysis of the residual stresses caused by the processes of technological welding cycle of steels and alloys. It has been found that the maximum residual stresses arise during cooling of the weldment. The research has established a satisfactory convergence of the calculation results of the mathematical and experimental design values of strain during welding on a special stand that allows identifying the direction of internal stresses action, as well as assessing the geometry details on the calculation model of temperature fields in butt welding of steel and titanium billets. In the article the authors show the possibility of using the coercimeter to assess the stress state of the material, its defects, the ability to predict the structural state and properties of welded joints. The studies have enabled the authors to give an opinion on the timing and dynamics of the flow of welding deformation as a result of internal residual stresses and structural changes caused by the welding process.
About the Authors
V. I. Murav’evRussian Federation
Dr. Sci. (Eng.), Chief Researcher, Professor of the Chair “Mechanical Engineering and Metallurgy”
P. V. Bakhmatov
Russian Federation
Cand. Sci. (Eng.), Assist. Professor, Head of the Chair “Mechanical Engineering and Metallurgy”
N. O. Pletnev
Russian Federation
Postgraduate of the Chair “Mechanical Engineering and Metallurgy”
A. A. Debelyak
Russian Federation
Postgraduate of the Chair “Mechanical Engineering and Metallurgy”
References
1. Vinokurov V.A., Grigor’yants A.G. Teoriya svarochnykh deformatsii i napryazhenii [Theory of welding deformations and stresses]. Moscow: Mashinostroenie, 1984, 280 p. (In Russ.).
2. Russo V.L. Dugovaya svarka v inertnykh gazakh [Arc welding in inert gases]. Leningrad: Sudostroenie, 1984, 120 p. (In Russ.).
3. Gurevich S.M., Zamkov V.N., Blashchuk V.E., Kushnirenko N.A., Kharchenko G.K. Metallurgiya i tekhnologiya svarki titana i ego splavov [Metallurgy and technology of welding of titanium and its alloys]. Kiev: Naukova dumka, 1986, 240 p. (In Russ.).
4. Tarasov A.A., Matokhin G.V., Molokov K.A. Raspredelenie temperaturnykh polei i ikh vliyanie na strukturnye parametry materialov pri svarke. Issledovaniya po voprosam povysheniya effektivnosti sudostroeniya i sudoremonta. Sbornik [Distribution of temperature fields and their effects on structural parameters of materials at welding. Researches of the issues to increase the efficiency of shipbuilding and shop repair. Collected articles]. Vladivostok, 2005, 202 p. (In Russ.).
5. Karpov L.P. Profilaktika razrushenii i novye tekhnologii termoobrabotki [Destruction preventive measures and new technologies of heat treatment]. Moscow: Mashinostroenie, 2003, 252 p. (In Russ.).
6. Potak Ya.M. Khrupkie razrusheniya stalei i stal’nykh izdelii [Brittle fractures of steels and steel items]. Moscow: Mashinostroenie, 1965, 388 p. (In Russ.).
7. Sizov A.M., Vorob’ev G.A. Influence of pulse treatment on internal stresses in steels. Perspektivnye materialy. 1997, no. 4, pp. 67–71. (In Russ.).
8. Debelyak A.A., Murav’ev V.I., Bakhmatov P.V. Kinetics of deformation processes at welding of blanks from carbon steel. In: Materialy Rossiiskoi nauchno-tekhnicheskoi konferentsii “Fundamental’nye issledovaniya v oblasti tekhnologii dvoinogo naznacheniya” (g. Komsomol’sk-na-Amure, 21–24 noyabrya 2011 g.) [Proceedings of Russian Scientific Conference “Fundamental researches in the area of twofold purpose technologies” (Komsomolsk-on-Amur, November 21–24, 2011)]. Komsomol’sk-on-Amur: izd. KnAGTU, 2011, 317 p. (In Russ.).
9. Debelyak A.A., Murav’ev V.I., Bakhmatov P.V. Determination of the possibility to calculate residual deformation by heat fields when welding thin plates edge-to-edge. Uchenye zapiski KnAGTU. 2010, no. IV-1 (4), pp. 68–70. (In Russ.).
10. Waschull Horst. Präparative Metallographie. Präparationstechnik für die Lichtmikroskopie. Leipzig, Deutscher Verlag für Grundstoffindustrie, 1984. (Russ.ed.: Waschull H. Prakticheskaya metallografiya. Metody prigotovleniya obraztsov. Moscow: Metallurgiya, 1988. 320 p.).
11. Brandon David G., Kaplan Wayne D. Microstructural characterization of materials. Chichester, New York, 1999. (Russ.ed.: Brandon D., Kaplan W. Mikrostruktura materialov. Metody issledovaniya i kontrolya. Moscow: Tekhnosfera, 2006, 384 p.).
12. Shpileva A.A. Razrabotka kolichestvennykh strukturnoenergeticheskikh pokazatelei mikrostruktury polikristallicheskikh materialov: Avtoref. dis. kand. tekh. nauk [Development of quantitative structural-and-energy data of polycrys-talline material microstructure. Extended Abstract of Cand. Sci. Diss.]. Komsomol’sk-on-Amur, 2009, 22 p. (In Russ.).
13. Kolmakov A.G., Terent’ev V.F., Bakirov M.B. Metody izmereniya tverdosti [Measuring methods of hardness]. Moscow: Intermet Inzhiniring, 2005, 150 p. (In Russ.).
14. Nikitenko B.F., Kazakov N.S., Kuznetsov V.P. Puti povysheniya dostovernosti i tochnosti analiza emissionnoi spektrografii [Ways to increase reliability and exactness of the emission spectrography analysis]. Moscow: izd. TsNIIiTECh, 1989, 54 p. (In Russ.).
15. Cherepovskii P.V., Murav’ev V.I. Efficiency of residual stress relief in welded titanium alloys. In: Issledovaniya i perspektivnye razrabotki v aviatsionnoi promyshlennosti. Materialy III nauch.- prakt. konferentsii molodykh uchenykh i aspirantov (23 – 25 noyabrya 2005 g., Moskva) [Researches and perspective developments in aviation industry. Proceedings of the 3rd Theoretical and Practical Conference of Young Scientists and Post-graduates (November 23–25, 2005, Moscow)]. Moscow: OAO “OKB Sukhogo”, 2005, pp. 510–515. (In Russ.).
Review
For citations:
Murav’ev V.I., Bakhmatov P.V., Pletnev N.O., Debelyak A.A. EFFECT OF STRESS STATE ON THE STRUCTURE AND PROPERTIES OF CONSTRUCTIONS OF STEELS AND ALLOYS AT WELDING. Izvestiya. Ferrous Metallurgy. 2016;59(4):251-255. (In Russ.) https://doi.org/10.17073/0368-0797-2016-4-251-255