Preview

Izvestiya. Ferrous Metallurgy

Advanced search

FRACTURE MODEL OF METALLURGICAL SINTER

https://doi.org/10.17073/0368-0797-2016-3-159-166

Abstract

The paper covers specifi c features of up-to-date test methods for metallurgical sinter strength, defi ciencies of these methods, related to issues of overall improvement of sintering and blast-furnace production processes requiring application of sinter fracture models. Theories of liquid melt migration upon sintering as well as features of sinter cake formation are reviewed; a model of metallurgical sinter fracture is suggested as well, which is based on combined use of the model for hard inclusion tension in the matrix along with the fracture model based on Rittinger’s law. Forces applied to sinter lumps in a test drum are determined and a method for adjustment of the sinter fracture model is suggested with use of granulometric properties of products under testing. It is suggested to use probability distribution of fracture model parameters for the purpose of adjustment. Dependences of these parameters from sinter basicity, carbon content in the charge material and limestone lump size are determined.

About the Authors

M. Yu. Ryabchikov
Magnitogorsk State Technical University named after G.I. Nosov
Russian Federation

Cand. Sci. (Eng.), Assist. Professor of the Chair of Automated Control Systems,

Magnitogorsk



V. V. Grebennikova
Magnitogorsk State Technical University named after G.I. Nosov
Russian Federation

Senior Lecturer of the Chair of Automated Control Systems,

Magnitogorsk



E. S. Ryabchikova
Magnitogorsk State Technical University named after G.I. Nosov
Russian Federation

Cand. Sci. (Eng.), Senior Lecturer of the Chair of Automated Control Systems,

Magnitogorsk



N. V. Bogdanov
Magnitogorsk State Technical University named after G.I. Nosov
Russian Federation

MA Student,

Magnitogorsk



References

1. Ryabchikov M.Yu., Grebennikova V.V. Set of models for automated intelligent assistance system for quality control of metallurgical sinter. Avtomatizirovannye tekhnologii i proizvodstva. 2015, no. 2(8), pp. 4–8. (In Russ.).

2. Ryabchikov M. Y., Grebennikova V. V. Simulation of the combined eff ect of production factors on metallurgical sinter mechanical strength. Metallurgist. 2013, vol. 57, no. 3/4, pp. 274–283.

3. Ryabchikov M.Yu., Grebennikova V.V., Ryabchikova E.S. Control of metallurgical sinter quality using reducibility model. Stal’. 2014, no. 2, pp. 4–8. (In Russ.).

4. Dmitriev A.N., Vit’kina G.Yu., Chesnokov Yu.A. Development of methodological basis for analysis of iron-ore raw material and coke quality infl uence on technical and economic performance of blast-furnace melting process. In: Fizicheskaya khimiya i tekhnologiya v metallurgii. Sbornik trudov, posvyashchennyi 60-letiyu IMET UrO RAN [Physical chemistry and technology of metallurgy. Coll. of works dedicated to the 60th anniversary of IMET UB RAS]. Ekaterin burg, 2015, pp. 309–314. (In Russ.).

5. Perminov A.I. Povyshenie eff ektivnosti domennoi plavki na osnove ratsional’nogo vybora sostava shikhty: dis. ... kand. tekhn. nauk. [Improvement of blast-furnace melting productivity based on reasonable selection of charge material composition. Cand. Tech. Sci. Diss.]. Ekaterinburg, 2008, 153 p. (In Russ.).

6. Tovarovskii I.G. Infl uence of blast-furnace parameters on coke consumption and productivity. Steel in Translation. 2014, vol. 44, no. 5, pp. 350–358.

7. Sivukhin D.V. Obshchii kurs fi ziki: ucheb. posobie dlya vuzov [General physics course: manual for universities]. Moscow: Fizmatlit: Izd-vo MFTI, 2005, 560 p. (In Russ.).

8. Khopunov E.A. Selektivnoe razrushenie mineral’nogo i tekhnogennogo syr’ya (v obogashchenii i metallurgii) [Selective fracture of mineral and industrial raw material (in terms of concentration and metallurgy)]. Ekaterinburg: OOO “UIPTs”, 2013, 429 p. (In Russ.).

9. Gol’dshtein R.V., Gorodtsov V.A., Lisovenko D.S. Acoustic mechanics of crystalline materials. Izvestiya RAN, MTT. 2010, no. 4, pp. 43–62. (In Russ.).

10. Ershov E.V. Metody, modeli i algoritmy upravleniya tekhnologicheskim protsessom proizvodstva aglomerata na osnove optikoelektronnogo kontrolya ego kachestva: avtoref. diss.: dok. tekh. nauk. [Methods, models and procedures of sinter production process control based on electro-optical inspection of its quality. Extended Abstract of Dr. Sci. Diss.] Kursk: GOU VPO KurskGTU, 2009, 36 p. (In Russ.).

11. Korotich V.I., Frolov Yu.A., Bezdezhskii G.N. Aglomeratsiya rudnykh materialov [Sintering pf ore materials]. Ekaterinburg: GOU VPO “UGTU-UPI”, 2003, 400 p. (In Russ.).

12. Pokhvisnev A.N., Sharov S.I., Vegman E.F. Investigation of ironore sinter texture. Stal’. 1969, no. 10, pp. 873–877. (In Russ.).

13. Boltengagen I.L., Vlasov V.N., Klishin V.I. Calculation of rollerpress parameters for kimberlite ore crushing. Journal of Mining Science. 2003, vol. 39, no. 3, pp. 260–270.

14. Dyrda V.I., Kalashnikov V.A., Khmel’ I.V., Kalgankov E.V. Kinetics of crushing of mineral raw materials in rubber-lining ball mills. Geotekhnichna mekhanika. 2013, no. 108, pp. 89–96. (In Russ.).

15. Bazilevich S.V., Vegman E.F. Aglomeratsiya [Sintering]. Moscow: Metallurgiya. 1967, 368 p. (In Russ.).


Review

For citations:


Ryabchikov M.Yu., Grebennikova V.V., Ryabchikova E.S., Bogdanov N.V. FRACTURE MODEL OF METALLURGICAL SINTER. Izvestiya. Ferrous Metallurgy. 2016;59(3):159-166. (In Russ.) https://doi.org/10.17073/0368-0797-2016-3-159-166

Views: 613


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)