Preview

Izvestiya. Ferrous Metallurgy

Advanced search

ULTRAFINE-GRAINED STRUCTURE FORMATION IN CARBON STEEL BY HIGH-SPEED COMPRESSION DEFORMATION AT INCREASED TEMPERATURES

https://doi.org/10.17073/0368-0797-2016-2-123-127

Abstract

The velocity increase of plastic deformation leads to significant changes in the microstructure of metallic materials. The structure and properties of the metal defi ne such factors as pressure value (or impulse), deformation velocity (or the duration of the process) and temperature. The work is devoted to the research of the influence of high-velocity deformation on the microstructure of materials. Using research complex Gleeble 3500 high-speed deformation of steel grade 20 at temperatures of 800, 900, 1000 and 1200 °C was carried out. The microstructure was studied and the microhardness of samples was determined. The principal possibility to provide strain refi nement of low-carbon steel structure up to a grain size of about 400 nanometers during high-speed deformation at temperatures of 800–1000 °C is shown, just as it is achieved at a severe plastic deformation without heating or with a slight heating which doesn’t exceed the recrystallization temperature.

About the Authors

N. V. Koptseva
Magnitogorsk State Technical University named after G.I. Nosov, Magnitogorsk, Russia
Russian Federation

Dr. Sci. (Eng.), Professor of the Chair “Foundry and Materials Science”



Yu. Yu. Efi mova
Magnitogorsk State Technical University named after G.I. Nosov, Magnitogorsk, Russia
Russian Federation

Cand. Sci. (Eng.), Assist. Professor of the Chair “Engineering and Metallurgical Technology”



O. A. Nikitenko
Magnitogorsk State Technical University named after G.I. Nosov, Magnitogorsk, Russia
Russian Federation

Cand. Sci. (Eng.), Senior Lecturer of the Chair “Engineering and Metallurgical Technology”



M. P. Baryshnikov
Magnitogorsk State Technical University named after G.I. Nosov, Magnitogorsk, Russia
Russian Federation

Cand. Sci. (Eng.), Assist. Professor of the Chair “Engineering and Metallurgical Technology”



M. S. Zherebtsov
Magnitogorsk State Technical University named after G.I. Nosov, Magnitogorsk, Russia
Russian Federation
Postgraduate


References

1. Song R., Speer J.G., Matlock D.K., Ponge D., Raabe D. Оverview of pro-cessing, microstructure and mechanical properties of ultrafine grained bcc steels. Materials Science and Engineering: A. 2006, vol. 441, no. 1–2, pp. 1–17.

2. Valiev R.Z., Aleksandrov I.V. Ob”emnye nanostrukturnye metallicheskie materialy [Volumetric nanostructural metallic material]. Moscow: IKTs “Akademkniga”, 2007. 398 p. (In Russ.).

3. Zrnik J., Dobatkin S.V., Kovarik T., Dzugan J. Ultrafi ne grain structure development in steels with diff erent carbon content subjected to severe plastic deformation. The Minerals, Metals and Materials Society – 3-rd International Conference on Processing Materials for Properties 2008, PMP III. Bangkok, 2009, pp. 850–855.

4. Kolmogorov G.L. Technological peculiarities of receiving nanostructural materials by the method of intensive plastic torsional deformation. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2008, no. 9, pp. 18–20. (In Russ.).

5. He T., Xiong Y., Ren F., Guo Z., Volinsky A.A. Microstructure of ultra-fi ne-grained high carbon steel prepared by equal channel angular pressing. Materials Science and Engineering: A. 2012, vol. 535, pp. 306–310.

6. Sitdikov O.Sh. Microstructure evolution of extrahigh tensile aluminum alloy in the process of high-temperature all-round forging with a great deformation degree. Deformatsiya i razrushenie materialov. 2011, no. 1, pp. 15–26. (In Russ.).

7. Chukin M.V., Emaleeva D.G. Heat treatment infl uence on the evolution of structure and properties of steel wire in the process of equal channel angular broaching. Vestnik Magnitogorskogo gos. tekhn. un-ta im. G.I. Nosova. 2008, no. 2, pp. 70–71. (In Russ.).

8. Beigel’zimer Ya.E., Synkov S.G., Orlov D.V. Screw extrusion. Obrabotka metallov davleniem. 2006, no. 4, pp. 17–22. (In Russ.).

9. Valiev R.Z., Raab G.I., Botkin A.V., Dubinina S.V. Obtaining of ultra-fi ne-grained metals and alloys using the intensive plastic deformation: new approaches to the technology development. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2012, no. 8, pp. 44–47. (In Russ.).

10. Chukin M.V., Korchunov A.G., Polyakova M.A., Emaleeva D.G. Forming ultrafi ne-grain structure in steel wire by continuous deformation. Steel in Translation. 2010, vol. 40, no. 6, pp. 595–597.

11. Zel’dovich V.I., Frolova N.Yu., Kheifets A.E., Khomskaya I.V., Shorokhov E.V., Nasonov P.A. Increase of titanium mechanical properties by the method of dynamic channel angular pressing. Voprosy materialovedeniya. 2012, no. 1 (69), pp. 29–37. (In Russ.).

12. Dun Yuechen, Sitdikov V.D., Aleksandrov I.V., Vang D.T. Infl uence of high-velocity deformation on copper microstructure and crystallographic texture in different structural states. Pis’ma o materialakh. 2013, vol. 3, no. 2 (10), pp. 169–172. (In Russ.).

13. Bondar’ M.P., Psakh’e S.G., Dmitriev A.I., Nikonov A.Yu. On the conditions of strain localization and microstructure fragmentation under high-rate loading. Physical Mesomechanics. 2013, vol. 16, no. 3, pp. 191–199.

14. Petrova A.N., Brodova I.G., Shirinkina I.G., Nasonov P.A., Shorokhov E.V. Peculiarities of ultrafi ne-grained and nanocrystal states in the AlMn alloy obtained at intensive impacts. Pis’ma o materialakh. 2013, vol. 3, no. 2 (10), pp. 126–129. (In Russ.).

15. Meyers М.A. Dynamic Behavior of Materials. John Wiley & Sons. New York, 1994, pp. 393.

16. Bhattacharyya A., Rittel D., Ravichandran G. Eff ect of strain rate on deformation texture in OFHC copper. Scripta Mater. 2005, vol. 52, pp. 657–661.

17. Rudskoi A.I., Kolbasnikov N.G., Zotov O.G., Ringinen D.A., Nemtinov A.A., Kuznetsov V.V. Research of the structure and properties of TRIP-steels on the complex GLEEBLE-3800. Chernye metally. 2010, no. 2, pp. 8–14. (In Russ.).

18. Chukin D.M., Ishimov A.S., Zherebtsov M.S. The use of the complex Gleeble 3500 for the analysis of phase transformation in steel of the eutectoid composition, microalloyed by boron. In: Obrabotka sploshnykh i sloistykh materialov: mezhvuz. sb. nauch. tr. [Treatment of solid and layered materials: interuniversity scientifi c collected papers]. Chukin M.V. ed. Magnitogorsk: izd. Magnitogorsk. gos. tekhn. un-ta im. G.I. Nosova, 2012. Issue 38, pp. 53–57. (In Russ.).

19. Koptseva N.V., Chukin M.V., Nikitenko O.A. Use of the Thixomet PRO software for quantitative analysis of the ultrafi ne-grain structure of low-and medium-carbon steels subjected to equal channel angular pressing. Metal Science and Heat Treatment. 2012, vol. 54, no. 7–8, pp. 387–392.

20. Koptseva N.V., Efi mova Yu.Yu., Baryshnikov M.P., Nikitenko O.A. Formation of the structure and mechanical properties of carbon structural steel in the process of nanostructuring by the method of equal channel angular pressing. Deformatsiya i razrushenie materialov. 2011, no. 7, pp. 11–17. (In Russ.).

21. Koptseva N.V. Deformation grinding of the structure of carbon structural steel by the method of equal channel angular pressing to increase hardware production durability. Stal’. 2012, no. 8, pp. 50–56. (In Russ.).


Review

For citations:


Koptseva N.V., Efi mova Yu.Yu., Nikitenko O.A., Baryshnikov M.P., Zherebtsov M.S. ULTRAFINE-GRAINED STRUCTURE FORMATION IN CARBON STEEL BY HIGH-SPEED COMPRESSION DEFORMATION AT INCREASED TEMPERATURES. Izvestiya. Ferrous Metallurgy. 2016;59(2):123-127. (In Russ.) https://doi.org/10.17073/0368-0797-2016-2-123-127

Views: 622


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)