Preview

Izvestiya. Ferrous Metallurgy

Advanced search

CARBIDIZATION OF TECHNOGENIC MICROSILICA BY BROWN-COAL SEMI-COKE

https://doi.org/10.17073/0368-0797-2016-2-105-111

Abstract

The paper presents the researches at the temperatures of 1873, 1923, 1973 К and duration of 5 – 30 min of carbidization of briquetted monocharges, consisting of microsilica, formed at the production of silicon and its alloys and diff erent carbon deoxidizers: brown coal and coal-mine semi-cokes, coke fi nes and coke dust. It has been established that the highest indicators are reached at carbidization with the use of brown coal semi-coke of Berezovskii deposits of Kansk-Achinsk basin: the yield of silicon carbide is 97.00 – 97.62 % at its content in the products of carbidization of 82.52 – 84.90 %. The optimum temperature-time conditions and the indicators of carbidization have been defi ned, namely: the temperature of 1923 – 1973 К at the duration of 20 – 15 min. The dominant phase in the products of carbidization is silicon carbide of a cubic structure (β-SiC). As a result of chemical enrichment, the content of SiC in carbide is 90 – 91 %, i.e. it is higher than in abrasive micropowders with the granularity of 1 – 2 μm. The enrichment effi ciency from the impurity of oxides and iron is high and makes 87 – 95 %. For silicon carbide a high content of silica is typical – more than 7 %; that allows considering it as a perspective material for the production of carbide-silicic refractory materials on a silica band. Silicon carbide has been received in the form of micropowder with the particles of irregular form with a size diapason of 0.2 – 1.0 μm.

About the Authors

A. E. Anikin
Siberian State Industrial University, Novokuznetsk, Russia
Russian Federation
Senior Lecturer of the Chair “Thermal Power and Ecology”


G. V. Galevskii
Siberian State Industrial University, Novokuznetsk, Russia
Russian Federation

Dr. Sci. (Eng.), Professor, Director of the Institute of Metallurgy and Materials



V. V. Rudneva
Siberian State Industrial University, Novokuznetsk, Russia
Russian Federation

Dr. Sci. (Eng.), Professor of the Chair “Non-ferrous Metalllurgy and Chemical Engineering”



References

1. Garshin A.P., Shumyacher V.M., Pushkarev O.I. Abrazivy i materialy konstruktsionnogo naznacheniya na osnove karbida kremniya [Abrasives and materials of constructional appointment on the basis of silicon carbide]. Volgograd: izd. VolgGASU, 2008, 189 p. (In Russ.).

2. Rudneva V.V. Nanomaterialy i nanotekhnologii v proizvodstve karbida kremniya: monografi ya v 3 t. Tom Dopolnitel’nyi. Plazmometallurgicheskoe proizvodstvo karbida kremniya: razvitie teorii i sovershenstvovanie tekhnologii [Nanomaterials and nanotechnologies in production of carbide of silicon. Plasma metallurgical production of carbide of silicon: development of the theory and improvement of technology]. Moscow: Flinta: Nauka, 2008, 387 p. (In Russ.).

3. Umanskii A.P., Dushko O.V., Pushkarev O.I. Composite wearproof materials on the basis of silicon carbide. Ogneupory i tekhnicheskaya keramika. 2009. no 2, pp. 22–24. (In Russ.).

4. Polyakh O.A., Yakushevich N.F. Assessment of opportunity and expediency of use the fi ne containing silica materials in recovery processes. Vestnik gorno-metallurgicheskoi sektsii RAEN. Otdelenie metallurgii. 1999, vol. 8, pp. 29–40. (In Russ.).

5. Zubov V.L., Gasik M.I. Elektrometallurgiya ferrosilitsiya [Ferrosilicium electrometallurgy]. Dnepropetrovsk: Sistemnye tekhnologii, 2002, 704 p. (In Russ.).

6. Yakushevich N.F., Polyakh O.A. Tekhnologiya ugletermicheskogo sinteza mikroporoshkov karbida kremniya [Technology of coal thermal synthesis of micropowders of silicon carbide]. In: Novye materialy i tekhnologii [New materials and technologies]. Moscow: MGATU, 1994, pp. 32–35. (In Russ.).

7. Dinel’t V.M., Livenets V.I. Sposob polucheniya karbida kremniya [Way of receiving of silicon carbide]. Certifi cate of authorship USSR no. 1730035, Byulleten’ izobretenii. 1992, no. 22. (In Russ.).

8. Strakhov V.M. Problems with carbonaceous materials for an ore and chemical electrothermie and a ways of their decision. Koks i khimiya. 2010, no. 8, pp. 29–33. (In Russ.).

9. Strakhov V.M. Alternative carbon reducing agents for ferroalloy production. Coke and Chemistry. 2009, vol. 52, no. 1, pp. 19–22.

10. Islamov S.R. Processing of low-grade coals into high-calorifi c fuel. Ugol’. 2012, no. 3, pp. 64–66. (In Russ.).

11. Ulanovskii M.L. Formation of the set properties of a carbonaceous reducer for electrothermal processes. Koks i khimiya. 2000, no. 4, pp. 14–20. (In Russ.).

12. Nefedov P.Ya. About requirements to quality of carbonaceous reducers for processes of an ore electrothermie. Koks i khimiya. 2000, no. 8, pp. 24–32. (In Russ.).

13. Isakov V.P., Yudina K.S., Filippov Yu.A. Sposob ochistki karbida kremniya [Way of purifi cation of silicon carbide]. Patent RF no. 2060935. Byulleten’ izobretenii. no. 24, 1996. (In Russ.).

14. Galevskii G.V., Rudneva V.V., Galevskii S.G. Features of application of traditional methods of research of physical chemical and technological properties of refractory carbides and borides for certification of their high-disperse state. Vestnik gorno-metallurgicheskoi sektsii RAEN. Otdelenie metallurgii. 2003, no. 12, pp. 78–86. (In Russ.).

15. Rudneva V.V. Galevskii G.V. Thermooxidizing stability of nanopowders of refractory carbides and borides. Izvestiya VUZov. Chernaya metallurgiya. = Izvestiya. Ferrous Metallurgy. 2007, no. 4, pp. 20–24. (In Russ.).


Review

For citations:


Anikin A.E., Galevskii G.V., Rudneva V.V. CARBIDIZATION OF TECHNOGENIC MICROSILICA BY BROWN-COAL SEMI-COKE. Izvestiya. Ferrous Metallurgy. 2016;59(2):105-111. (In Russ.) https://doi.org/10.17073/0368-0797-2016-2-105-111

Views: 673


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)