CARBON, NITROGEN AND HYDROGEN IN STEELS: PLASTICITY AND BRITTLENESS
https://doi.org/10.17073/0368-0797-2015-10-761-768
Abstract
Interstitial elements in steel, carbon, nitrogen and hydrogen, are
analyzed in terms of their effect on the electron structure, properties
of dislocations, strengthening, plasticity and fracture. It is shown that similarities and differences in the mechanical properties of corresponding solid solutions are controlled by the effect of the above mentioned elements on the density of electron states at the iron Fermi level and, as a result, on the concentration of free electrons. The latter is decreased by the carbon and increased due to nitrogen and hydrogen in the iron, which changes the character of interatomic bonds: carbon enhances their covalent component, whereas nitrogen and hydrogen strengthen the metallic one. The velocity of dislocations in the course of plastic deformation is discussed using the approach of mobile and immobile interstitial atoms. In the fi rst case, they are obstacles for dislocation slip, and mobility of dislocations is determined by the enthalpy of binding between interstitial atoms and dislocations. If interstitial atoms are suffi ciently mobile to accompany dislocations, the character of interatomic bonds within the interstitial clouds around the dislocations is locally changed. As a result, the specifi c energy of dislocations (line tension) and the distance between them in the pile-ups are changed in accordance with the local change of the shear modulus around the dislocations. Based on the performed studies, the effect of interstitial elements on the mechanical properties of steels is discussed. Particularly, the essential similarity between the hydrogen-caused brittleness and the nitrogen-induced ductile-to-brittle transition in the austenitic steels is interpreted.
About the Author
V. G. GavriljukRussian Federation
Dr. Sci. (Eng.), Professor, Head of the Department of physical bases of alloying of steels and alloys
References
1. Frehser J., Kubisch Ch. Berg und Hüttenmännische Monatshefte. 1963, bd. 108, no. 11, pp. 369–380.
2. Norström L.A. Metal Science. 1977, Vol. 11, no. 6, pp. 208–212.
3. Degallaix S., Foct J., Hendry A. Mater Sci Technol. 1986, Vol. 2, no. 9, pp. 946–950.
4. Gavriljuk V.G., Berns H., Escher Ch., Glavatskaya N.I., Sozinov A., Petrov Yu.N. Grain boundary strengthening in austenitic nitrogen steels. Materials Science Forum. 1999, Vol. 318, pp. 455–460.
5. Sandström R., Bergqvist H. Scand J Metallurgy. 1977, no. 6, pp. 156–169.
6. Nyilas A., Obst B., Nakajima H. Proceedings of High Nitrogen Steels Confer-ence, HNS-93. Gavriljuk V.G., Nadutov V.M. eds. Institute for Metal Physics. Kiev. 1993, pp. 339–344.
7. Gavriljuk V.G., Sozinov A.L., Foct J., Petrov Yu.N., Polushkin Yu.A. Effect of nitrogen on the temperature dependence of the yield strength of austenitic steels. Acta Materialia. 1998, Vol. 46, no. 4, pp. 1157–1163.
8. Uggowitzer P.J., Harzenmoser M. Proceedings of High Nitrogen Steels Conference, HNS-88. Foct J., Hendry A. eds. Institute of Metals. London. 1989, pp. 174–179.
9. Gavriljuk V.G., Duz’ V.A., Yephimenko S.P. Proceedings of High Nitrogen Steels Conference, HNS-90. Stein G., Witulski H. eds. Stahl & Eisen. Düsseldorf. 1990, pp. 100–103.
10. Nilsson J.O. The effect of slip behaviour on the low cycle fatigue behaviour of two austenitic stainless steels. Scripta Metallurgica. 1983, Vol. 17, no. 5, pp. 593–596.
11. Vogt J.B., Magnin T., Foct J. Fatique Fract Engng Mater Structure. 1993, Vol. 16, no. 5, pp. 555–564.
12. Briant C.L. Effects of nitrogen and cold work on the sensitization of austenitic stainless steels. Report NP-2457 on the research project 1574-1. General Electric Company. New York. 1982.
13. Mudali U. K., Dayal R.K., Gnanamoorthy J.B., Rodrigez P. Relationship between pitting and intergranular corrosion of nitrogenbearing austenitic stainless steels. ISIJ International. 1996, Vol. 36, no. 7, pp. 799–806.
14. Azuma S., Miyuki H., Kudo T. Effect of alloying nitrogen on crevice corrosion of austenitic stainless steels. ISIJ International. 1996. Vol. 36, no. 7, pp. 793–798.
15. Berns H., Lueg J., Trojan W., Zoch H.W. Proceedings of High Nitrogen Steels Conference, HNS-90. Stein G., Witulski H. eds. Stahl & Eisen. Düsseldorf. 1990, pp. 425–429.
16. Gavriljuk V.G., Shanina B.D., Berns H. Ab initio development of a high-strength corrosion-resistant austenitic steel. Acta Materialia. 2008, Vol. 56, pp. 5071–5082.
17. Tobler R.L., Meyn D. Cleavage-like fracture along slip planes in Fe-18Cr-3Ni-13Mn-0.37N austenitic stainless steel at liquid helium temperature. Metallurgical Transactions A. 1988, Vol. 19, no. 6, pp. 1626–1631.
18. Tomota Y., Xia Y., Inoue K. Acta Materialia. 1998, Vol. 46, no. 5, pp. 1577–1587.
19. Hohenberg P., Kohn W. Phys Rev B. 1964, Vol. 136, pp. 864–871.
20. Kohn W., Sham L.J. Phys Rev A. 1965, Vol. 140, pp. 1133–1138.
21. Blaha P., Schwarz K., Madsen G.K.H., Kvasnicka D. and Luitz J. WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties. Karlheinz Schwarz Techn. Universität. Wien. Austria. ISBN 3-9501031-1-2. 2001.
22. Teus S.M., Shyvanyuk V.N., Shanina B.D., Gavriljuk V.G. Effect of hydrogen on electronic structure of fee iron in relation to hydrogen embrittlement of austenitic steels. Physica Status Solidi (A) Applications and Materials Science. 2007, Vol. 204, no. 12, pp. 4249–4258.
23. Gavriljuk V.G., Shanina B.D., Syvanyuk V.N., Teus S.M. Electronic effect on hydrogen brittleness of austenitic steels. Journal of Applied Physics. 2010, Vol. 108, pp. 083723 – 1-9.
24. Berns H., Gavriljuk V.G., Riedner S., Tyshchenko A. High strength stainless austenitic CrMnCN steels – Part I: Alloy design and properties.Steel Research International. 2007. Vol. 78, no. 9, pp. 710–715.
25. Berns H., Gavriljuk V.G., Riedner S. High Interstitial Stainless Austenitic Steels. Springer. Berlin, 2013, 167 pp.
26. Gavriljuk V.G., Duz’ V.A., Efi menko S.P., Kvasnevskii O.G. Interaction of carbon atoms and nitrogen with dislocations in austenite. Physics of Metals and Metallography, 1987, Vol. 64, no. 6, pp. 1132–1135. (In Russ.).
27. Atrens A., Fiore N.F., Miura K. J Applied Physics. 1977, Vol. 48, no. 10, pp. 4247–4251.
28. Gavriljuk V.G., Kushnareva N.P., Prokopenko V.G. On the nature of structural changes during the tempering of lower bainite. Physics of Metals and Metallography, 1976, Vol. 42, no. 6, pp. 1288–1293. (In Russ.).
29. Zelinski A., Lunarska E., Smialowski M. Acta Metallurgica. 1977, Vol. 25, pp. 305–308.
30. Schoeck G., Bisogni E., Shyne J. Acta Metallurgica. 1964, Vol. 12, no. 12, pp. 1466–1468.
31. Rivière A., Amirault J.P., Woirgard J. II Nuovo Cimento. 1976, Vol. 33, pp. 398–407.
32. Schoeck G. Acta Metallurgica. 1963, Vol. 11, no. 6, pp. 617–622.
33. Seeger A. Phys Stat Sol a. 1979, Vol. 55, no. 2, pp. 457–468.
34. Takita K., Sakamoto K. Scripta Metallurgica. 1976, Vol. 10, pp. 399–403.
35. Gavriljuk V.G., Shanina B.D., Shyvanyuk V.N., Teus S.M. Hydrogen embrittlement of austenitic steels: Electron approach. Corrosion Reviews. 2013, vol. 31, no. 2, pp. 33–50.
36. Birnbaum H.K., Sofronis P. Hydrogen-enhanced localized plasticity-a mechanism for hydrogen-related fracture. Materials Science and Engineering A. 1994, Vol. 176, pp. 191–202.
37. Larikov L.N., Fal’chenko V.M., Mazanko V.F., Gurevich S.M., Kharchenko G.I., Ignatenko A.I. DAN SSSR. 1975, Vol. 221, no. 5, pp. 1073–1075. (In Russ.).
38. Pogorelov A.E., Ryaboshapka K.P., Zhuravlev A.F. Mass transfer mechanism in real crystals by pulsed laser irradiation. Journal of Applied Physics. 2002, Vol. 92, pp. 5766.
39. Harzenmoser M.A.E. Massive aufgestickte austenitisch-rostfreie Stähle und Duplexstähle. Doctoral thesis, Eidgenössische Technische Hochschule. Zürich, 1990.
40. Gavriljuk V.G., Berns H. High Nitrogen Steels. Springer. Berlin. 1999. 378 p.
Review
For citations:
Gavriljuk V.G. CARBON, NITROGEN AND HYDROGEN IN STEELS: PLASTICITY AND BRITTLENESS. Izvestiya. Ferrous Metallurgy. 2015;58(10):761-768. (In Russ.) https://doi.org/10.17073/0368-0797-2015-10-761-768