STRUCTURE AND MICROHARDNESS OF TITANIUM ALLOYS AFTER ELECTROMECHANICAL TREATMENT AND ULTRASONIC SURFACE ALLOYING
https://doi.org/10.17073/0368-0797-2015-4-272-276
Abstract
The authors proposed the complex technology of surface hardening
of titanium alloys based on a combination of surface alloying with
boron and carbon, electromechanical treatment (EMT) and non-abrasive ultrasonic fi nishing (NUF). The results of the study of microhardness and features of the structural-phase state of the surface layer of 5V titanium pseudo-α-type alloy were presented after various combinations of treatments (EMT, NUF, surface alloying). It was shown that for a variety of schemes hardening was achieved by increasing the surface microhardness of the treated material to 30 – 40 %. The greatest effect can be observed when using alloying agent during EMT + NUF (graphite cast powder in combination with an organic binder). Increase in microhardness was provided due to the hardening by severe plastic deformation of the metal, grain size refi nement (from 50 to 1 μm) during phase transitions, as well as the formation of fi ne reinforcing borides and carbides of titanium (whose content in the surface layer increased up to 1.88 and 0.46 %, respectively).
About the Authors
V. P. BagmutovRussian Federation
Dr. Sci. (Eng.), Professor of the Chair strength of materials
V. I. Vodop’yanov
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair strength of materials
D. S. Denisevich
Russian Federation
Postgraduate of the Chair strength of materials
I. N. Zakharov
Russian Federation
Dr. Sci. (Eng.), Assist. Professor, Head of the Chair strength of materials
E. B. Zakharova
Russian Federation
Engineer of the Chair strength of materials
References
1. Noli F., Misaelides P., Riviere J.-P. Enhancement of the corrosion resistance of a Ti-based alloy by ion-beam deposition methods. Nucl. Instr. and Meth. In: Physics Research. Section B: Beam Interactions with Materials and Atoms. 2009, Vol. 267, pp. 1670.
2. Guseva M.I., Martynenko Yu.V., Smyslov A.M. Deep modifi cation of titanium alloy by ionic implantation. Russian Metallurgy (Metally). 2000, no. 3, pp. 114–119.
3. Gokul Lakshmi S., Tamilselvi S., Rajendran N., Arivuoli D. Effect of N + ionimplantation on the corrosion behavior of Ti-6Al-7Nb and Ti-5Al-2Nb-1Ta orthopaedic alloys in Hanks solution. J. of applied electrochemistry. 2004, Vol. 34, no. 3, pp. 271–276.
4. Sharkeev Yu.P., Kukareko V.A., Eroshenko A.Yu., Kuchina A.S., Belyi A.V., Bataev V.A., Smirnov A.I., Veselov S.V. Ion implantation as an increase method of titanium fatigue life in large-grained and ultrafi ne-grained states. Perspektivnye materialy. 2011, no. 12, pp. 136–142. (In Russ.).
5. Ivanov Yu.F., Budovskikh E.A., Gromov V.E., Bashchenko L.P., Soskova N.A., Raikov S.V. Formation of nanocomposite layers on the surface of VT1-0 titanium at eletroexplosive carburization and electron-beam treatment. Izvestiya vuzov. Chernaya metallurgiya = Izvestiya – Ferrous Metallyrgy. 2012, no. 6, pp. 67–70. (In Russ.).
6. Petrovskaya T.S. Integrated processing of titanium surface. Izvestiya VolgGTU. Ser. Problemy materialovedeniya, svarki i prochnosti v mashinostroenii. 2009, Vol. 11, no. 3, pp. 71–73. (In Russ.).
7. Panin A.V., Kazachenok M.S., Shugurov A.R., Chernov I.P., Lider A.M., Kretova O.M. Ultrasonic processing of hydrotreated technical ВТ1-0 titanium. Tyazheloe mashinostroenie. 2010, no. 2, pp. 36–39. (In Russ.).
8. Bashchenko L.P., Ivanov Yu.F., Budovskikh E.A. Modifi cation of the titanium VT1-0 surface layers structure after electroexplosive carboboronizing and electron-beam treatment. Izvestiya vuzov. Chernaya metallurgiya = Izvestiya – Ferrous Metallyrgy. 2013, no. 3, pp. 68–70. (In Russ.).
9. Brover G.I., Brover A.V., D’yachenko L.D. Some peculiarities of structure and properties of surface layers of titanium after laser hardening and alloying. Izvestiya vuzov. Tsvetnaya metallurgiya. 2005, no. 6, pp. 51–55. (In Russ.).
10. Bagmutov V.P., Parshev S.N., Dudkina N.G., Zakharov I.N. Elektromekhanicheskaya obrabotka: tekhnologicheskie i fi zicheskie osnovy, svoistva, realizatsiya [Electromechanical processing: technological and physical bases, properties, realization]. Novosibirsk: Nauka, 2003. 318 p. (In Russ.).
11. Bagmutov V.P., Vodop’yanov V.I., Zakharov I.N., Gorunov A.I., Denisevich D.S. Effect of intense thermomechanical treatment on the structure and properties of titanium pseudo-α alloys during electro mechanical treatment. Russian Metallurgy (Metally). 2013, no. 5, pp. 712–715.
12. Bagmutov V.P., Zakharov I.N., Gorunov A.I., Zakharova E.B., Denisevich D.S., Kosogorov A.V. Composite surface hardening of steel and titanium alloys on the bases of electromechanical and ultrasonic processing. Izvestiya VolgGTU. Ser. Problemy aterialovedeniya, svarki i prochnosti v mashinostroenii. 2013, Vol. 7, no. 6 (109), pp. 68–71. (In Russ.).
13. Kholopov Yu.V., Zinchenko A.G., Savinykh A.A. Bezabrazivnaya ul’trazvukovaya fi nishnaya obrabotka metallov [Nonabrasive ultrasonic fi nal metal processing]. Leningrad: LDNTP, 1988. 18 p. (In Russ.).
14. Zwicker Ulrich. Titan und Titan-Legierungen. Springer Verlag, Berlin-Heidelberg-New York 1974. (Russ.ed.: Zwicker U. Titan i ego splavy. Moscow: Metallurgiya, 1979. 512 p.)
Review
For citations:
Bagmutov V.P., Vodop’yanov V.I., Denisevich D.S., Zakharov I.N., Zakharova E.B. STRUCTURE AND MICROHARDNESS OF TITANIUM ALLOYS AFTER ELECTROMECHANICAL TREATMENT AND ULTRASONIC SURFACE ALLOYING. Izvestiya. Ferrous Metallurgy. 2015;58(4):272-276. (In Russ.) https://doi.org/10.17073/0368-0797-2015-4-272-276