MICROSTRUCTURE EVOLUTION IN THE MODIFIED SUBSURFACE LAYER OF TiNi ALLOY UNDER LOW ENERGY HIGH CURRENT PULSED ELECTRON BEAM
https://doi.org/10.17073/0368-0797-2014-9-45-51
Abstract
The paper is devoted to the effect of pulsed electron-beam treatments with different energy densities Е1 = 15 J/cm2, Е2 = 20 J/cm2 и Е3 = 30 J/cm2 on the change of structural and phase states in the NiTi surface layers. It is revealed that in the diffraction patterns of NiTi specimens with one side irradiated by a low-energy high-current electron beam the refl ections B2 phase and martensite phase B19′ are observed. By increasing the energy density from Е1 = 15 J/cm2 to Е3 = 30 J/cm2 the content of martensite phase B19′ increases from 5 % to 80 %. It is also revealed that the surface layer is melted to the thickness 8–10 μm, and in this layer the Ti2Ni phase dissolves. The dis-solution of Ti2Ni phase leads to a change in the concentration of Ti and Ni. It is established that the modifi ed B2 phase in the melted layer is enriched with titanium as compared with its original content in the B2 phase up to irradiation. It is revealed that B19′ phase formation occurs when the surface layers of the samples TiNi are treated with pulsed electron beams with lower values of the energy density in the beam (Е1 = 15 J/cm2, Е2 = 20 J/cm2). In the samples treated with pulsed elect ron beams with greater energy density in the beam Е3 = 30 J/cm2, the surface layer to the entire depth of penetration of X-ray beam is in the martensitic state.
About the Authors
L. L. MeisnerRussian Federation
Dr. Sci. (Eng.), Professor, Chief Researcher
M. G. Ostapenko
Russian Federation
Cand. Sci. (Eng.), Junior Researcher
A. I. Lotkov
Russian Federation
Dr. Sci. (Eng.), Professor
E. Yu. Gudimova
Russian Federation
Postgraduate
A. A. Neiman
Russian Federation
Cand. Sci. (Eng.), Junior Researcher
References
1. Boiko V.I., Valyaev A.N., Pogrebnyak A.D. The modifi cation of metals by high-current pulsed electron beams. UFN – Physics Uspekhi. 1999, Vol. 169, no. 11, pp. 1270–1271.
2. Kadyrzhanov K.K., Komarov F.F., Pogrebnyak A.D. etc. Ionno-luchevaya i ionno-plazmennaya modifi katsiya materialov [Ion-beam and ion-plasma modifi cation of materials]. Moscow: Izd. MGU, 2005. 640 p. (In Russ.).
3. Nanoinzheneriya poverkhnosti. Formirovanie neravnovesnykh sostoyanii v poverkhnostnykh sloyakh materialov metodami elektronno-ionno-plazmennykh tekhnologii [Nanoengineering surface. Formation of non-equilibrium states in the surface layers of materials by means of electron-ion-plasma technologies]. Lyakhov. I.Z., Psakh’e S.G. eds.; RAN SO, In-t fi ziki prochnosti i materialovedeniya. Novosibirsk: izd. SO RAN. 2008. 276 p. (In Russ.).
4. Pogrebnyak A.D., Bratushka S.N., Malikov L.V., Levintant N., Erdybaeva N.K., Plotnikov S.V., Gritsenko B.P. Effect of high doses of N+, N+ + Ni+, and Mo+ + W+ ions on the physicomechanical properties of TiNi. ZhTF = Technical Physics. 2009. Vol. 54, no. 5, pp. 667–673.
5. Rotshtein V.P., Ivanov Yu.F., Markov A.B. In: Materials surface processing by directed energy techniques. Pauleau Y. ed. Amsterdam: Elsevier, 2006, pp. 205–240.
6. Lotkov A.I., Meisner L.L., Grishkov V.N. Titanium nickelide-based alloys: surface modifi cations with ion beam, plasma fl ows and chemical treatment. Fizika metallov i metallovedenie = Physics of Metals and Metallography. 2005. Vol. 99, no. 5, pp. 508–519.
7. Zhang K.M., Yang D.Z., Zou J.X., Grosdidier T., Dong C. Surface and Coatings Technology. 2006. Vol. 201(6), pp. 3096–3102.
8. Hao S., Wu P., Zou J., Grosdidier T., Dong C. Applied surface science. 2007. Vol. 253(12), pp. 5349–5354.
9. Zou J.X., Zhang K.M., Hao S.Z., Dong C., Grosdidier T. Thin Solid Films. 2010. Vol. 519(4), pp. 1404–1415.
10. Zhang K., Zou J., Grosdidier T., Dong C. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 2010. Vol. 28, pp. 1349–1355.
11. Meisner L.L., Lotkov A.A., Ostapenko M.G., Gudimova E.Yu. X-ray analysis of gradient of residual stress in nickel-titanium alloy irradiated with low-energy high-current electron beams. Fizicheskaja mezomehanika = Physical Mesomechanics. 2012. Vol. 3, pp. 79–89. (In Russ.).
12. Meisner L.L., Lotkov A.A., Ostapenko M.G., Gudimova E.Yu. XRD study of residual elastic stress and microstructure of near-surface layers in nickel-titanium alloy irradiated with low-energy High-current electron beams. Applied Surface Science. 2013. Vol. 280, pp. 398–404.
13. Lipson G., Steeple G. Interpretacija poroshkovyh rentgenogramm [Interpretation of powder X-ray diffraction patterns]. Moscow: Mir, 1972. 384 p. (In Russ.).
14. Grishkov V.N., Lotkov A.I. Martensite transformations in the homogeneity region of TiNi intermetallic compound. FMM = Physics of Metals and Metallography. 1987. Vol. 60. Issue 2, pp. 132–137.
15. Prokoshkin S.D., Korotitskiy A.V., Gundyrev V.M., Zeldovich V.I. Materials Science & Engineering. 2008. Vol. 481–482, pp. 489–493.Acknowledgements. Investigations were carried out in the framework of the state budget projects no. III.23.2.1, State contract no. 16.522-11-2019 and with the financial support of the Scholarship Fund of the President of the Russian Federation (SP-236.2012.4).
16.
Review
For citations:
Meisner L.L., Ostapenko M.G., Lotkov A.I., Gudimova E.Yu., Neiman A.A. MICROSTRUCTURE EVOLUTION IN THE MODIFIED SUBSURFACE LAYER OF TiNi ALLOY UNDER LOW ENERGY HIGH CURRENT PULSED ELECTRON BEAM. Izvestiya. Ferrous Metallurgy. 2014;57(9):45-51. (In Russ.) https://doi.org/10.17073/0368-0797-2014-9-45-51