Deoxidation capacity of aluminum in ferromanganese carbon-containing melts
https://doi.org/10.17073/0368-0797-2023-2-206-214
Abstract
Deoxidation (reduction of oxygen concentration dissolved in liquid metal) is an integral part of steel production technology. For obtaining deeply deoxidized metal, mainly aluminum is used at metallurgical enterprises. It should be taken into account that alloying elements of steels and alloys under certain conditions can act as deoxidizing elements, contributing to the complex nature of the deoxidation process. Almost all steels contain manganese in one concentration or another. The study of interaction processes in the Fe – Mn – Al – O – C system at steelmaking temperatures is of applied importance. In this paper, a thermodynamic analysis of the deoxidation ability of aluminum in oxygen-containing iron-manganese melts was carried out. At the same time, influence of carbon on course of the deoxidation process was taken into account. In the study, it is effective to use a technique for constructing the solubility surface of components in metal (SSCM) – a diagram that connects the compositions of liquid metal with the compositions of conjugated non-metallic phases. In the course of this work, oxygen solubility isotherms in the Fe – Mn – O system were calculated for the temperature range of 1550 – 1650 °C. For the Fe – Mn – Al – O – C (1600 °C) system, composite sections of the SSCM were constructed at fixed carbon concentrations in steel [C] = 0; 0.1; 0.4; 0.8 and 1.2 % (hereafter by weight). It is shown that with the simultaneous presence of manganese and aluminum in an oxygen–containing iron-based melt (at industrially significant concentrations [Al] = 0.001 – 0.010 % and [Mn] – less than 1.0 %), aluminum in the liquid metal will act as a deoxidizing agent, and corundum inclusions will be formed as interaction products. Complex deoxidation by aluminum and manganese with the formation of spinel is typical only for manganese-alloyed steels, where the concentration of manganese is more than 1.5 %.
About the Authors
L. A. MakrovetsRussian Federation
Larisa A. Makrovets, Engineer of the Chair of Materials Science and Physical Chemistry of Materials
76 Lenina Ave., Chelyabinsk 454080, Russia
O. V. Samoilova
Russian Federation
Ol’ga V. Samoilova, Cand. Sci. (Chem.), Senior Researcher of the Chair of Materials Science and Physical Chemistry of Materials
76 Lenina Ave., Chelyabinsk 454080, Russia
G. G. Mikhailov
Russian Federation
Gennadii G. Mikhailov, Dr. Sci. (Eng.), Prof., Senior Researcher of the Chair of Materials Science and Physical Chemistry of Materials
76 Lenina Ave., Chelyabinsk 454080, Russia
References
1. Paek M.K., Jang J.M., Kang Y.B., Pak J.J. Aluminum deoxidation equilibria in liquid iron: Part I. Experimental. Metallurgical and Materials Transactions B. 2015;46(4): 1826–1836. https://doi.org/10.1007/s11663-015-0368-0
2. Kharlashin P.S., Nosenko O.A., Yatsenko A.N. Development of rational deoxidation technology for dead-melted steel grades. Vіsnik Priazovs’kogo derzhavnogo tekhnіchnogo unіversitetu. Serіya: Tekhnіchnі nauki. 2011;2(23):52–55. (In Russ.).
3. Shapovalov A.N., Dema R.R, Nefed’ev S.P. Improving the efficiency of steel de-oxidation at the Ural steel. Materials Science Forum. 2020;989:400–405. https://doi.org/10.4028/www.scientific.net/MSF.989.400
4. Yakushev A.M., Mikhailov E.N., Kudrin V.A. Study of steel deoxidation by complex deoxidizers. In: Steel Production and Steel Casting. Moscow: Metallurgiya; 1969:163–170. (In Russ.).
5. Novokhatskii I.A., Belov B.F. On thermodynamics of complex aluminum deoxidation of manganese iron. Izvestiya AN SSSR. Metally. 1969;(5):41–46. (In Russ.).
6. Fischer W.A., Bardenheuer P.W. Die Gleichgewichte zwisсhen mangan-, aluminium- und sauerstoffhaltigen Eisenschmelzen und ihren Schlacken im Mangan (II)-oxydtiegel bei 1530 bis 1700 °C. Archiv für das Eisenhüttenwesen. 1968;39(9):637–643. (In Germ.). https://doi.org/10.1002/srin.196803570
7. Mikhailov G.G., Samoilova O.V., Makrovets L.A., Smirnov L.A. Thermodynamic modeling of isotherms of oxygen solubility in liquid metal of Fe–Mg–Al–O system. Izvestiya. Ferrous Metallurgy. 2019;62(8):639–645. (In Russ.). https://doi.org/10.17073/0368-0797-2019-8-639-645
8. Mikhailov G.G., Makrovets L.A., Samoilova O.V. Phase equilibria in a liquid metal of Fe–La–Ce–O system at 1600 °C. Solid State Phenomena. 2020;299:468–474. https://doi.org/10.4028/www.scientific.net/SSP.299.468
9. Mikhailov G.G., Leonovich B.I., Kuznetsov Yu.S. Thermodynamics of Metallurgical Processes and Systems. Moscow: ID MISiS; 2009:520. (In Russ.).
10. Ohta H., Suito H. Activities of MnO in CaO–SiO2–Al2O3–MnO (<10 Pct)–FetO(<3 pct) slags saturated with liquid iron. Metallurgical and Materials Transactions B. 1995;26(2): 295–303. https://doi.org/10.1007/bf02660972
11. Dimitrov S., Weyl A., Janke D. Control of the manganese-oxygen reaction in pure iron melts. Steel Research. 1995; 66(3):87–92. https://doi.org/10.1002/srin.199501092
12. Chipman J., Gero J.B., Winhler T.B. The manganese equilibrium under simple oxide slags. Transactions of AIME. 1950; 188:341–345.
13. Steelmaking Data Sourcebook, Japan Society for the Promotion of Science. The 19th Committee on Steelmaking. New York: Gordon and Breach Science Publishers; 1988:125.
14. Shibata H., Tanaka T., Kimura K., Kitamura S.-Y. Composition change in oxide inclusions of stainless steel by heat treatment. Ironmaking and Steelmaking. 2010;37(7):522–528. https://doi.org/10.1179/030192310x12700328925903
15. Linchevskii B.V., Samarin A.M. Oxygen solubility in iron-manganese melts. Izvestiya AN SSSR. OTN. 1957;(2):9–18. (In Russ.).
16. Luzgin V.P., Vishkarev A.F., Yavoiskii V.I. Determination of deoxidizing ability of elements by the method of electromotive forces. Izvestiya. Ferrous Metallurgy. 1963;6(9):50–54. (In Russ.).
17. Li S., Cheng G., Yang L., Chen L., Yan Q., Li C.A. A thermodynamic model to design the equilibrium slag compositions during electroslag remelting process: Description and verification. ISIJ International. 2017;57(4):713–722. https://doi.org/10.2355/isijinternational.isijint-2016-655
18. Fuwa T., Chipman J. The carbon–oxygen equilibria in liquid iron. Transactions of AIME. 1960;218:887–891.
19. Mikhailov G.G., Makrovets L.A., Samoilova O.V. Thermodynamic modeling of phase diagrams of binary and ternary oxide systems belonging to the FeO‒MgO‒MnO‒Al2O3 system. Novye ogneupory. 2020;(6):47–50. (In Russ.). https://doi.org/10.17073/1683-4518-2020-6-47-50
20. Sigworth G.K., Elliott J.F. The thermodynamics of liquid dilute iron alloys. Metal Science. 1974;8(1):298–310. https://doi.org/10.1179/msc.1974.8.1.298
21. Ren Q., Zhang L. Effect of cerium content on inclusions in an ultra-low-carbon aluminum-killed steel. Metallurgical and Materials Transactions B. 2020;51(2):589–600. https://doi.org/10.1007/s11663-020-01779-y
22. Park J.H., Todoroki H. Control of MgO·Al2O3 spinel inclusions in stainless steels. ISIJ International. 2010;50(10): 1333–1346. https://doi.org/10.2355/isijinternational.50.1333
23. Itoh H., Hino M., Ban-Ya S. Assessment of Al deoxidation equilibrium in liquid iron. Tetsu-to-Hagané. 1997;83(12):773–778. https://doi.org/10.2355/tetsutohagane1955.83.12_773
24. Janke D., Fischer W.A. Gleichgewichte von Chrom und Mangan mit Sauerstoff in Eisenschmelzen bei 1600 °C. Archiv für das Eisenhüttenwesen. 1976;47(3):147–151. (In Germ.). https://doi.org/10.1002/srin.197603795
25. Shevtsov V.E., Merker E.E., Luzgin V.P. Thermodynamics of oxygen solutions in iron-manganese melts. Izvestiya. Ferrous Metallurgy. 1987;30(7):1–3. (In Russ.).
26. Hilty D.C., Crafts W. Solubility of oxygen in liquid iron containing silicon and manganese. Transactions of AIME. 1950; 188:425–436.
27. Jung I.-H., Decterov S.A., Pelton A.D. A thermodynamic model for deoxidation equilibria in steel. Metallurgical and Materials Transactions B. 2004;35(3):493–507. https://doi.org/10.1007/s11663-004-0050-4
28. Paek M.-K., Do K.-H., Kang Y.-B., Jung I.-H., Pak J.-J. Aluminum deoxidation equilibria in liquid iron: Part III – Experiments and thermodynamic modeling of the Fe–Mn–Al–O system. Metallurgical and Materials Transactions B. 2016; 47(5):2837–2847. https://doi.org/10.1007/s11663-016-0728-4
29. Kong L., Deng Z., Zhu M. Formation and evolution of non-metallic inclusions in medium Mn steel during secondary refining process. ISIJ International. 2017;57(9):1537–1545. https://doi.org/10.2355/isijinternational.ISIJINT-2017-118
30. Schürmann E., Bannenberg N. Die kombinierten Desoxidationsgleichgewichte mit Mangan, Aluminium und Silicium sowie ihre Bedeutung für die Einschlußbildung. Archiv für das Eisenhüttenwesen. 1984;55(10):455–462. (In Germ.). https://doi.org/10.1002/srin.198405375
31. Sabzi M., Farzam M. Hadfield manganese austenitic steel: A review of manufacturing processes and properties. Materials Research Express. 2019;6(10):1065c2. https://doi.org/10.1088/2053-1591/ab3ee3
32. Kolokol’tsev V.M., Vdovin K.N., Chernov V.P., Feoktistov N.A., Gorlenko D.A., Dubrovin V.K. Study of abrasive and impact and abrasive wear mechanisms of high manganese steel. Vestnik MGTU im. G.I. Nosova. 2017;15(2): 54–62. (In Russ.). https://doi.org/10.18503/1995-2732-2017-15-2-54-62
33. Nishigaki R., Matsuura H. Al deoxidation equilibrium of Fe–10–30 mass % Mn melt at 1873 K. Tetsu-to-Hagané. 2019;105(3):369–372. https://doi.org/10.2355/tetsutohagane.tetsu-2018-118
Review
For citations:
Makrovets L.A., Samoilova O.V., Mikhailov G.G. Deoxidation capacity of aluminum in ferromanganese carbon-containing melts. Izvestiya. Ferrous Metallurgy. 2023;66(2):206-214. (In Russ.) https://doi.org/10.17073/0368-0797-2023-2-206-214