Influence of the composition and cooling rate of alumocalcium slag on its crumblability
https://doi.org/10.17073/0368-0797-2022-11-806-813
Abstract
The main components of metallurgical slags are iron compounds, which are extracted by reduction smelting. The process of obtaining various products based on iron and slags of different compositions (alumocalcium self-crumbling, etc.) can be implemented in several ways. It is important to use a mode of smelting and cooling of the alumocalcium slag formed during melting in the furnace that ensures its most complete spontaneous crumbling and high rates of extraction of REM from it. Synthetic slags having a phase composition similar to industrial samples after the smelting of iron ores were selected for the experiments. The simulated samples correspond to the dicalcium silicate primary crystallisation region on the ternary phase diagram of the CaO – SiO2 – Al2O3 system. After crumbling, the slag was subjected to sieve analysis using a mechanical sieve. Slags with a silicon modulus k = 2.0 that actively crumbled during cooling were used in the experiments. A higher silicon modulus results in a lower crumblability. It was established that it is impossible to precisely limit the composition areas of the crumbling slags at specific cooling rates. The studies showed that the crumblability of slags improves when moving towards the centre of the dicalcium silicate region. The composition of the slags is close to the composition of the points located in the area bounded by the lines 2CaO·SiO2 – 2CaO·Al2O3 and 2CaO·SiO2 – 12CaO·7Al2O3 on one side and by the lines of the silicon modulus no higher than 2.85 – 3.00 on the other side. The granulometric composition is almost independent of the cooling rate. The temperature mode from smelting to cooling affects the crumblability of the slags. The most promising are slags with a silicon modulus in the range of 2.85 – 3.00 close to the phase triangle 12CaO·7Al2O3 – 2CaO·SiO2 – 2CaO·Al2O3 .
About the Authors
A. B. LebedevRussian Federation
Andrei B. Lebedev, Cand. Sci. (Eng.), Research Associate of the Scientific Center “Problems of Processing of Mineral and Technogenic Resources”
2 21st Line, Vasilievsky Island, St. Petersburg 199106, Russian Federation
V. S. Shuiskaya
Russian Federation
Vera S. Shuiskaya, Research Laboratory Assistant of the Scientific Center “Problems of Processing of Mineral and Technogenic Resources”
2 21st Line, Vasilievsky Island, St. Petersburg 199106, Russian Federation
References
1. Bazhenov I.N., Basov O.O. Method of induction control of iron weight fraction in magnetite ore. Journal of Mining Institute. 2018, vol. 230, pp. 123–130. (In Russ.). https://doi.org/10.25515/pmi.2018.2.123
2. Sizyakov V.M., Brichkin V.N. About the role of hydrafed calcium carboaluminates in improving the technology of complex processing of nephelines. Journal of Mining Institute. 2018, vol. 231, pp. 292–298. (In Russ.). https://doi.org/10.25515/PMI.2018.3.292
3. Khat’kov V.Yu., Boyarko G.Yu. Administrative methods of import substitution management of deficient types of mineral raw materials. Journal of Mining Institute. 2018, vol. 234, pp. 683-692. (In Russ.). https://doi.org/10.31897/pmi.2018.6.683
4. Zinoveev D.V., Grudinskii P.I., Dyubanov V.G., Kovalenko L.V., Leont’ev L.I. Global recycling experience of red mud – a review. Part I: Pyrometallurgical methods. Izvestiya. Ferrous Metallurgy. 2018, vol. 61, no. 11, pp. 843–858. (In Russ.). https://doi.org/10.17073/0368-0797-2018-11-843-858
5. Volkov A.I., Stulov P.E., Leont’ev L.I., Uglov V.A. Analysis of the use of rare earth metals in ferrous metallurgy of Russia and world. Izvestiya. Ferrous Metallurgy. 2020, vol. 63, no. 6, pp. 405–418. (In Russ.). https://doi.org/10.17073/0368-0797-2020-6-405-418
6. Zubkova O., Alexeev A., Polyanskiy A., Karapetyan K., Kononchuk O., Reinmöller M. Complex processing of saponite waste from a diamond-mining enterprise. Applied Sciences. 2021, vol. 11, no. 14, article 6615. https://doi.org/10.3390/app11146615
7. Bulaev A.G., Melamud V.S., Boduen A.Ya. High-temperature biox of copper and zinc from non-standard concentrate with high content of arsenic. International Research Journal. 2018, no. 12 (78), part 1, pp. 72–76. (In Russ.). https://doi.org/10.23670/IRJ.2018.78.12.012
8. Gorlanov E.S., Bazhin V.Yu., Fedorov S.N. Carbothermic synthesis of titanium diboride: Upgrade. Journal of Siberian Federal University. Chemistry. 2018, no. 11 (2), pp. 156–166. https://doi.org/10.17516/1998-2836-0065
9. Barinkova A.A., Piirainen V.Yu., Barinkov V.M. New composite material with neutralized red mud. Informatsionno-technologicheskii vestnik. 2021, no. 2(28), pp. 156–169. (In Russ.). https://doi.org/10.21499/2409-1650-2021-28-2-156-169
10. Gur’ev A.A. Sustainable development of crude ore resources and benefication facilities of JSC “Apatit” based on best engineering solutions. Journal of Mining Institute. 2017, vol. 228, pp. 662–673. (In Russ.). https://doi.org/10.25515/PMI.2017.6.662
11. Boyarintsev A.V., Stepanov S.I., Htet Ye Aung, Maung Maung Aung. Hydrolytic sedimentation of aluminium and scandium from alkaline-carbonate solutions after leaching of red mud. Uspekhi v khimii i khimicheskoi tekhnologii. 2019, vol. 33, no. 1 (211), pp. 54–56. (In Russ.).
12. Akcil A., Akhmadiyeva N., Abdulvaliyev R., Abhilash, Meshram P. Overview on extraction and separation of rare earth elements from red mud: Focus on scandium. Mineral Processing and Extractive Metallurgy Review. 2018, vol. 39, no. 3, pp. 145–151. https://doi.org/10.1080/08827508.2017.1288116
13. Kapustina G.G., Rimlyand V.I. Research of the influence of continuous laser radiation on red mud. Vesti nauchnykh dostizhenii. Estestvennye i tekhnicheskie nauki. 2020, no. 1, pp. 6–9. (In Russ.).
14. Gazaleeva G.I., Mamonov S.V., Bratygin E.V., Klyushnikov A.M. Problems and innovation solution in technogenic raw material benefication. Gornyi informatsionno-analiticheskii byulleten’. 2017, no. 1, pp. 257–272. (In Russ.).
15. Zhang J., Li P., Liang M., Jiang H., Yao Z., Zhang X., Yu S. Utilization of red mud as an alternative mineral filler in asphalt mastics to replace natural limestone powder. Construction and Building Materials. 2020, vol. 237, article 117821. https://doi.org/10.1016/j.conbuildmat.2019.117821
16. Balykov A.A., Levenets O.O., Khainasova T.S. Flow bioreactor for studying bacterial-chemical leaching of sulfide copper-nickel ores and concentrates. Journal of Mining Institute. 2018, vol. 232, pp. 383–387. (In Russ.). https://doi.org/10.31897/pmi.2018.4.383
17. Alkan G., Xakalashe B., Yagmurlu B., Kaussen F., Friedrich B. Conditioning of red mud for subsequent titanium and scandium recovery – A conceptual design study. World of Metallurgy – ERZMETAL. 2017, vol. 70, no. 2, pp. 84–91.
18. Rogachev M.K., Aleksandrov A.N. Justification of a comprehensive technology for preventing the formation of asphalt-resin-paraffin deposits during the production of highlyparaffinic oil by electric submersible pumps from multiformation deposits. Journal of Mining Institute. 2021, vol. 250, pp. 596–605. (In Russ.). https://doi.org/10.31897/PMI.2021.4.13
19. Archambo M., Kawatra S.K. Red mud: Fundamentals and new avenues for utilization. Mineral Processing and Extractive Metallurgy Review. 2021, vol. 42, no. 7, pp. 427–450. https://doi.org/10.1080/08827508.2020.1781109
20. Nikiforov A.G., Ruchyov A.М. Garnet and rare-metals resources of the Vysota-181 ore occurrence, North Karelia. Transactions of Karelian Research Centre of the Russian Academy of Sciences. 2019, no. 10, pp. 62–70. (In Russ.). http://dx.doi.org/10.17076/geo1104
21. Smyshlyaeva K.I., Rudko V.A., Povarov V.G., Shaidulina A.A., Efimov I., Gabdulkhakov R.R., Pyagay I.N., Speight J.G. Influence of asphaltenes on the low-sulphur residual marine fuels’ stability. Journal of Marine Science and Engineering. 2021, vol. 9, no. 11, article 1235. https://doi.org/10.3390/jmse9111235
22. Ris A.D., Sundurov A.V., Dubovikov O.A. Bauxite concentrate behaviour at the leaching stage in the Bayer process. iPolytech Journal. 2019, vol. 23, no. 2, pp. 395–403. (In Russ.). https://doi.org/10.21285/1814-3520-2019-2-395-403
23. Artemenkov A.G., Bychenya Yu.G., Gerasimova L.G., Nikolaev A.I. Sulfuric acid decomposition of perovskite in the presence of additives increasing the stability of titanium (iv) in the liquid phase. Transactions of Karelian Research Centre of the Russian Academy of Sciences. 2018, vol. 9, no. 2–1, pp. 121–124. (In Russ.). https://doi.org/10.25702/KSC.2307-5252.2018.9.1.121-124
24. Geng J., Zhou M., Li Y., Chen Y., Han Y., Wan S., Zhou X., Hou H. Comparison of red mud and coal gangue blended geopolymers synthesized through thermal activation and mechanical grinding preactivation. Construction and Building Materials. 2017, vol. 153, pp. 185–192. https://doi.org/10.1016/j.conbuildmat.2017.07.045
25. Zhuchkov V.I., Leont’ev L.I., Zayakin O.V. Application of Russian ore raw materials to ferroalloys production. Izvestiya. Ferrous Metallurgy. 2020, vol. 63, no. 3–4, pp. 211–217. (In Russ.). https://doi.org/10.17073/0368-0797-2020-3-4-211-217
26. Leont’ev L.I., Tsukanov V.V., Smirnova D.L. D.K. Chernov’s role in creating and developing the doctrine of modern metallurgy and metal science. Part 2. Scientific and practical confirmation of D.K. Chernov’s ideas. Izvestiya. Ferrous Metallurgy. 2020, vol. 63, no. 11–12, pp. 873–877. (In Russ.). https://doi.org/10.17073/0368-0797-2020-11-12-873-877
27. Yang Z., Mocadlo R., Zhao M., Sisson R.D., Tao M., Liang J. Preparation of a geopolymer from red mud slurry and class F fly ash and its behavior at elevated temperatures. Construction and Building Materials. 2019, vol. 221, pp. 308–317. https://doi.org/10.1016/j.conbuildmat.2019.06.034
28. Agrawal S., Dhawan N. Investigation of mechanical and thermal activation on metal extraction from red mud. Sustainable Materials and Technologies. 2021, vol. 27, article e00246. https://doi.org/10.1016/j.susmat.2021.e00246
29. Jafarova S.T., Gahramanova E.B., Agayev A.I., Ahmadov M.M. Development and study of properties of contact masses on the basis of red mud. Azerbaijan Chemical Journal. 2017, no. 3, pp. 28–33.
30. Alekseev K., Mymrin V., Avanci M.A., Klitzke W., Magalhães W.L.E., Silva P.R., Catai R.E., Silva D.A., Ferraz F.A. Environmentally clean construction materials from hazardous bauxite waste red mud and spent foundry sand. Construction and Building Materials. 2019, vol. 229, article 116860. https://doi.org/10.1016/j.conbuildmat.2019.116860
31. Li Z., Zhang J., Li S., Lin C., Gao Y., Liu C. Feasibility of preparing red mud-based cementitious materials: Synergistic utilization of industrial solid waste, waste heat, and tail gas. Journal of Cleaner Production. 2021, vol. 285, article 124896. https://doi.org/10.1016/j.jclepro.2020.124896
32. Wang L., Chen L., Tsang D.C.W., Zhou Y., Rinklebe J., Song H., Kwon E.E., Baek K., Sik Ok Y. Mechanistic insights into red mud, blast furnace slag, or metakaolin-assisted stabilization/solidification of arsenic-contaminated sediment. Environment International. 2019, vol. 133, part B, article 105247. https://doi.org/10.1016/j.envint.2019.105247
33. Valeev D.V., Zinoveev D.V., Varnavskaya A.D. Reductive smelting of neutralized red mud for iron and aluminum-containing slag production. Transactions of Karelian Research Centre of the Russian Academy of Sciences. 2019, vol. 10, no. 1 (3), pp. 44–51. (In Russ.). https://doi.org/10.25702/KSC.2307-5252.2019.10.1.44-51
34. Lebedev A.B., Utkov V.A., Bazhin V.Yu. Use of red mud as a modifier in granulation of metallurgical slags. iPolytech Journal. 2019, vol. 23, no. 1, pp. 158–168. (In Russ.). https://doi.org/10.21285/1814-3520-2019-1-158-168
35. Krivenko P., Petropavlovskyi O., Kovalchuk O., Lapovska S., Pasko A. Design of the composition of alkali activated portland cement using mineral additives of technogenic origin. Eastern-European Journal of Enterprise Technologies. 2018, vol. 4, no. 6 (94), pp. 6–15. https://doi.org/10.15587/1729-4061.2018.140324
36. Agrawal S., Rayapudi V., Dhawan N. Extraction of iron values from red mud. Materials Today: Proceedings. 2018, vol. 5, no. 9, part 1, pp. 17064–17072. https://doi.org/10.1016/j.matpr.2018.04.113
37. Agrawal S., Dhawan N. Evaluation of red mud as a polymetallic source – A review. Minerals Engineering. 2021, vol. 171, article 107084. https://doi.org/10.1016/j.mineng.2021.107084
38. Leont’ev L.I., Zhuchkov V.I., Zayakin O.V., Sychev A.V., Mikhailova L.Yu. Potential for obtaining and applying complex niobium ferroalloys. Izvestiya. Ferrous Metallurgy. 2022, vol. 65, no. 1, pp. 10–20. (In Russ.). https://doi.org/10.17073/0368-0797-2022-1-10-20
39. Alexandrov A.A., Dashevskii V.Ya., Leont’ev L.I. Оxygen solubility in melts of Ni – Co system at complex deoxidation by aluminium and silicon. Izvestiya. Ferrous Metallurgy. 2019, vol. 62, no. 11, pp. 870–878. (In Russ.). https://doi.org/10.17073/0368-0797-2019-11-870-878
40. Hoc Thang N., Trung Kien P., Mohd Mustafa Al Bakri A. Lightweight heat resistant geopolymer-based materials synthesized from red mud and rice husk ash using sodium silicate solution as alkaline activator. MATEC Web of Conferences. 2017, vol. 97, no. 1, article 01119. https://doi.org/10.1051/matecconf/20179701119
41. Lis J., Chlubny L., Witulska K., Borowiak P., Kozak K., Misztal A., Czajkowska O. SHS of Ti3SiC2-based materials in the Ti–Si–C system: Impact of silicon excess. International Journal of Self-Propagating High-Temperature Synthesis. 2019, vol. 28, pp. 262–265. https://doi.org/10.3103/S1061386219040083
42. Kutepov Yu.I., Kutepova N.A., Vasil’eva A.D. External dump stability substantiation and monitoring in Kuzbass. Gornyi informatsionno-analiticheskii byulleten’. 2019, no. 4, pp. 109–120. (In Russ.). https://doi.org/10.25018/0236-1493-2019-04-0-109-120
43. Podoprigora D., Raupov I. Research of the influence of polymeric drilling mud on the filtration-capacitive properties of polymictic sandstones. Acta Technica CSAV (Ceskoslovensk Akademie Ved). 2018, vol. 63, pp. 537–546.
44. Sultanbekov R., Beloglazov I., Islamov S., Ong M. Exploring of the incompatibility of marine residual fuel: A case study using machine learning methods. Energies. 2021, vol. 14, no. 24, article 8422. https://doi.org/10.3390/en14248422
45. Shaidulina A.A., Konoplin R.R., Artyushevskiy D.I., Gorshneva E.A., Sutyaginsky M.A. Production of amorphous silicon dioxide derived from aluminum fluoride industrial waste and consideration of the possibility of its use as Al2O3–SiO2 catalyst supports. Catalysts. 2022, vol. 12, no. 2, pp. 162. https://doi.org/10.3390/catal12020162
46. Mukiza E., Liu X., Zhang L., Zhang N. Preparation and characterization of a red mud-based road base material: Strength formation mechanism and leaching characteristics. Construction and Building Materials. 2019, vol. 220, pp. 297–307. https://doi.org/10.1016/j.conbuildmat.2019.06.027
47. Pereira Babiska M., Fonseca Amaral L., da Silva Ribeiro L., Fontes Vieira C.M., Soares do Prado U., Castoldi Borlini Gadioli M., Souza Oliveira M., Santos da Luz F., Neves Monteiro S., da Costa Garcia Filho F. Evaluation and application of sintered red mud and its incorporated clay ceramics as materials for building construction. Journal of Materials Research and Technology. 2020, vol. 9, no. 2, pp. 2186–2195. https://doi.org/10.1016/j.jmrt.2019.12.049
Review
For citations:
Lebedev A.B., Shuiskaya V.S. Influence of the composition and cooling rate of alumocalcium slag on its crumblability. Izvestiya. Ferrous Metallurgy. 2022;65(11):806-813. https://doi.org/10.17073/0368-0797-2022-11-806-813