Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Development of temperature-speed modes of hot deformation of Co – 28Cr – 6Mo alloy based on processing maps

https://doi.org/10.17073/0368-0797-2022-11-786-797

Abstract

In the article, the tests of the medical alloy Co – 28Cr – 6Mo after homogenization for uniaxial compression at temperatures of 1000, 1100 and 1200 °C and strain rates of 1, 10, and 50 s­–1 were carried out using the Gleeble System 3800. The stress-strain curves describing the alloy deformation behavior were obtained. The calculations of hot deformation parameters (activation energy, Zener-Hollomon parameter) were performed using three models (power-law, exponential, and hyperbolic sine function) describing the flow stress. The highest degree of convergence was shown by the calculation results based on the power function and the hyperbolic sine function. These models can be used to accurately calculate the flow stress at given temperature and strain rate parameters, or to simulate the deformation process. Also, based on processing maps, the authors developed the deformation-speed modes of hot deformation of the Co – 28Cr – 6Mo alloy. It will make it possible to choose the optimal rolling modes in the future. According to the data obtained, favorable temperature-speed conditions for hot deformation are shifted as deformation accumulates to the region of high temperatures and low strain rates. At the same time, the extremely unfavorable zone with negative values of the ξ-criterion, which appears at e = 0.3 – 0.4, continues to grow quite significantly with an increase in the deformation effect. Hot deformation of the Co – 28Cr – 6Mo alloy at low compression ratios (e < 0.2) is more expedient to perform at temperatures above 1150 °C and strain rates of at least 20 s–1. With an increase in deformation degree, it is necessary to choose lower strain rates (1 – 5 s–1) and higher deformation temperature.

About the Authors

Yu. V. Gamin
National University of Science and Technology “MISIS”
Russian Federation

Yurii V. Gamin, Cand. Sci. (Eng.), Assist. Prof. of the Chair “Metal Forming”

4 Leninskii Ave., Moscow 119049, Russian Federation



A. V. Korotitskii
National University of Science and Technology “MISIS”
Russian Federation

Andrei V. Korotitskii, Cand. Sci. (Phys.-Math.), Senior Researcher of the Laboratory “Ultrafine-Grained Metal Materials”

4 Leninskii Ave., Moscow 119049, Russian Federation



T. Yu. Kin
National University of Science and Technology “MISIS”
Russian Federation

Tat’yana Yu. Kin, Postgraduate of the Chair “Metal Forming”

4 Leninskii Ave., Moscow 119049, Russian Federation



S. P. Galkin
National University of Science and Technology “MISIS”
Russian Federation

Sergei P. Galkin, Dr. Sci. (Eng.), Prof. of the Chair “Metal Forming”

4 Leninskii Ave., Moscow 119049, Russian Federation



S. A. Kostin
JSC “Plant of Quality Alloys”
Russian Federation

Sergei A. Kostin, Director of Development

33 Pokrovka Str., Moscow 115516, Russian Federation



E. O. Tikhomirov
National University of Science and Technology “MISIS”
Russian Federation

Evgenii O. Tikhomirov, Master Student of the Chair “Metal Forming”

4 Leninskii Ave., Moscow 119049, Russian Federation



References

1. Dobbs H.S., Robertson J.L.M. Heat treatment of cast Co-Cr-Mo for orthopedic implant use. Journal of Materials Science. 1983, vol. 18, pp. 391–401. https://doi.org/10.1007/BF00560627

2. Niinomi M., Nakai M., Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomaterialia. 2012, vol. 8, no. 11, pp. 3888–3903. https://doi.org/10.1016/j.actbio.2012.06.037

3. Moradi S.M., Zangeneh S., Vardak S., Bahrami R. New Co-Cr-Mo-Nb-Cu alloy for implant applications: Properties characterization. Journal of Alloys and Compounds. 2022, vol. 925, article 166387. https://doi.org/10.1016/j.jallcom.2022.166387

4. Mahmoud Z. Ibrahim, Ahmed A.D. Sarhan, Farazila Yusuf, Hamdi M. Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants – A review article. Journal of Alloys and Compounds. 2017, vol. 714, pp. 636–667. https://doi.org/10.1016/j.jallcom.2017.04.231

5. Henriques B., Gasik M., Souza J.C.M., Nascimento R.M., Soares D., Silva F.S. Mechanical and thermal properties of hot pressed CoCrMo–porcelain composites developed for prosthetic dentistry. Journal of the Mechanical Behavior of Biomedical Materials. 2014, vol. 30, pp. 103–110. https://doi.org/10.1016/j.jmbbm.2013.10.023

6. Vidal C.V., Muñoz A.I. Effect of thermal treatment and applied potential on the electrochemical behaviour of CoCrMo biomedical alloy. Electrochimica Acta. 2009, vol. 54, no. 6, pp. 1798–1809. https://doi.org/10.1016/j.electacta.2008.10.018

7. Vidal C.V., Muñoz A.I. Electrochemical characterisation of biome­dical alloys for surgical implants in simulated body fluids. Corrosion Science. 2008, vol. 50, no. 7, pp. 1954–1961. https://doi.org/10.1016/j.corsci.2008.04.002

8. Zhang E., Liu C. A new antibacterial Co-Cr-Mo-Cu alloy: Preparation, biocorrosion, mechanical and antibacterial property. Materials Science and Engineering: C. 2016, vol. 69, pp. 134–143. https://doi.org/10.1016/j.msec.2016.05.028

9. Yamanaka K., Mori M., Chiba A. Mechanical properties of as-forged Ni-free Co–29Cr–6Mo alloys with ultrafine-grained microstructure. Materials Science and Engineering: A. 2011, vol. 528, no. 18, pp. 5961–5966. https://doi.org/10.1016/j.msea.2011.04.027

10. Yamanaka K., Mori M., Yoshida K., Kuramoto K., Chiba A. Manufacturing of high-strength Ni-free Co–Cr–Mo alloy rods via cold swaging. Journal of the Mechanical Behavior of Biomedical Materials. 2016, vol. 60, pp. 38–47. https://doi.org/10.1016/j.jmbbm.2015.12.032

11. Yamanaka K., Mori M., Yoshida K., Balvay S., Hartmann D., Fabrègue D., Chiba A. Preparation of high-strength Co−Cr−Mo alloy rods via hot-caliber rolling. Materialia. 2020, vol. 12, article 100729. https://doi.org/10.1016/j.mtla.2020.100729

12. Makeev D.B., Kozlova O.N., Polulyakh L.A., Petelin A.L., Aleksandrov A.A., Dashevskii V.Ya. Involvement of the domestic manganese ores in production. Russian Metallurgy (Metally). 2020, vol. 2020, no. 9, pp. 938–941. https://doi.org/10.1134/S0036029520090098

13. Dashevskii V.Ya., Makeev D.B., Polulyakh L.A., Aleksandrov A.A., Leont’ev L.I. Dephosphorization of manganese-containing oxide melts. Doklady Physical Chemistry. 2017, vol. 473, pp. 55–57. https://doi.org/10.1134/S0012501617040017

14. Polulyakh L.A., Dashevskii V.Ya., Travyanov A.Ya ., Yusfin Yu.S., Petelin A.L. Behavior of phosphorus in blast furnace during smelting hot metal and ferromanganese. Izvestiya. Ferrous Metallurgy. 2009, vol. 52, no. 3, pp. 3–5. (In Russ.).

15. Liao Y., Pourzal R., Stemmer P., Wimmer M.A., Jacobs J.J., Fi­scher A., Marks L.D. New insights into hard phases of CoCrMo metal-on-metal hip replacements. Journal of the Mechanical Beha­vior of Biomedical Materials. 2012, vol. 12, pp. 39–49. https://doi.org/10.1016/j.jmbbm.2012.03.013

16. Caudillo M., Herrera-Trejo M., Castro M.R., Ramírez E., Gon­zález C.R., Juárez J.I. On carbide dissolution in an as-cast ASTM F-75 alloy. Journal of Biomedical Materials Research. 2002, vol. 59, no. 2, pp. 378–385. https://doi.org/10.1002/jbm.10001

17. Kaiser R., Williamson K., O’Brien C., Ramirez-Garcia S., Browne D.J. The influence of cooling conditions on grain size, secon­dary phase precipitates and mechanical properties of biomedical alloy specimens produced by investment casting. Journal of the Mechanical Behavior of Biomedical Materials. 2013, vol. 24, pp. 53–63. https://doi.org/10.1016/j.jmbbm.2013.04.013

18. Yamanaka K., Mori M., Chiba A. Assessment of precipitation behavior in dental castings of a Co-Cr-Mo alloy. Journal of the Mechanical Behavior of Biomedical Materials. 2015, vol. 50, pp. 268–276. https://doi.org/10.1016/j.jmbbm.2015.06.020

19. Rosenthal R., Cardoso B.R., Bott I.S., Paranhos R.P.R., Carvalho E.A. Phase characterization in as-cast F-75 Co–Cr–Mo–C alloy. Journal of Materials Science. 2010, vol. 45, pp. 4021–4028. https://doi.org/10.1007/s10853-010-4480-x

20. Chiba A., Lee S.-H., Matsumoto H., Nakamura M. Construction of processing map for biomedical Co–28Cr–6Mo–0.16N alloy by studying its hot deformation behavior using compression tests. Materials Science and Engineering: A. 2009, vol. 513–514, pp. 286–293. https://doi.org/10.1016/j.msea.2009.02.044

21. Guo S., Wu S., Guo J., Shen Y., Zhang W. An investigation on the hot deformation behavior and processing maps of Co-Ni-Cr-W-based superalloy. Journal of Manufacturing Processes. 2022, vol. 74, pp. 100–111. https://doi.org/10.1016/j.jmapro.2021.11.060

22. Kartika I., Li Y., Matsumoto H., Chiba A. Constructing processing maps for hot working of Co-Ni-Cr-Mo superalloy. Materials Transac­tions. 2009, vol. 50, no. 9, pp. 2277–2284. https://doi.org/10.2320/matertrans.M2009103

23. Ghosh S. Interpretation of microstructural evolution using dynamic materials modeling. Metallurgical and Materials Transactions A. 2000, vol. 31, pp. 2973–2974. https://doi.org/10.1007/BF02830342

24. Ma X., Zeng W., Wang K., Lai Y., Zhou Y. The investigation on the unstable flow behavior of Ti17 alloy in α+β phase field using processing map. Materials Science and Engineering: A. 2012, vol. 550, pp. 131–137. https://doi.org/10.1016/j.msea.2012.04.045

25. Yamashita Y., Li Y., Onodera E., Matsumoto H., Chiba A. Dynamic recrystallization behavior of biomedical CCM alloy with addi­tions of C and N. Materials Transactions. 2010, vol. 51, no. 9, pp. 1633–1639. https://doi.org/10.2320/matertrans.MAW201007

26. Li Y., Li J., Koizumi Y., Chiba A. Dynamic recrystallization beha­vior of biomedical Co-29Cr-6Mo-0.16N alloy. Materials Characte­rization. 2016, vol. 118, pp. 50–56. https://doi.org/10.1016/j.matchar.2016.05.004

27. Prasad Y.V.R.K., Rao K.P., Sasidhara S. Hot Working Guide: A Compendium of Processing Maps. Ohio: ASM International, 2015, 545 p.

28. Prasad Y.V.R.K., Rao K. Processing maps and rate controlling mechanisms of hot deformation of electrolytic tough pitch copper in the temperature range 300–950 °C. Materials Science and Engineering: A. 2005, vol. 391, no. 1–2, pp. 141–150. https://doi.org/10.1016/j.msea.2004.08.049

29. Evans R.W., Scharning P.J. Axisymmetric compression test and hot working properties of alloys. Materials Science and Technology. 2001, vol. 17, no. 8, pp. 995–1004. https://doi.org/10.1179/026708301101510843


Review

For citations:


Gamin Yu.V., Korotitskii A.V., Kin T.Yu., Galkin S.P., Kostin S.A., Tikhomirov E.O. Development of temperature-speed modes of hot deformation of Co – 28Cr – 6Mo alloy based on processing maps. Izvestiya. Ferrous Metallurgy. 2022;65(11):786-797. (In Russ.) https://doi.org/10.17073/0368-0797-2022-11-786-797

Views: 422


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)