Hardening mechanisms in stainless steel/aluminum bronze composite fabricated using electron beam additive manufacturing
https://doi.org/10.17073/0368-0797-2022-10-706-716
Abstract
The authors investigated the features of structural-phase state of a composite based on stainless austenitic steel with addition of 25 % (vol.) aluminum bronze. The composite was obtained by electron beam additive technology with simultaneous feeding of two wires. The paper considers analysis of the structural-phase state and mechanical characteristics. The contributions of various mechanisms to the composite hardening were evaluated. It was established that a multiphase structure is formed in the steel – 25 % bronze composite, which consists of 43.9 % austenite, 32.0 % ferrite and 24.2 % bronze. Dispersion-hardened copper particles are isolated in austenite grains, volume fraction of which counts 47 %. Dispersion-hardened NiAl particles with a volume fraction of 20 % are isolated in ferrite grains. Transmission electron microscopy data indicate a coherent conjugation of arrays of dispersion-hardened particles with the matrix. Such a composite structure provides an increase in the tensile strength by an average of 50 % compared to austenitic steel obtained by electron beam additive technology without the addition of aluminum bronze. It was found that the contributions of various hardening mechanisms to yield strength of austenite, ferrite and bronze amounted to 959.3, 972.7 and 408.7 MPa, respectively. Bronze grains do not make a significant contribution to increase in yield strength of the composite, except for its increase due to dislocation hardening. The main contributions to increase in the composite yield strength are made by austenite grains due to grain-boundary, dispersion and dislocation hardening and by ferrite grains due to grain-boundary, solid-solution and dislocation hardening.
Keywords
About the Authors
A. P. ZykovaRussian Federation
Anna P. Zykova, Cand. Sci. (Phys.-Math.), Senior Researcher, Head of the Laboratory of Structural Design of Advanced Materials
2/4 Akademicheskii Ave., Tomsk 634055, Russian Federation
A. O. Panfilov
Russian Federation
Aleksandr O. Panfilov, Postgraduate, Junior Researcher of the Laboratory of Structural Design of Advanced Materials
2/4 Akademicheskii Ave., Tomsk 634055, Russian Federation
A. V. Vorontsov
Russian Federation
Andrei V. Vorontsov, Cand. Sci. (Eng.), Research Associate of the Laboratory of Local Metallurgy in Additive Technologies
2/4 Akademicheskii Ave., Tomsk 634055, Russian Federation
E. A. Kolubaev
Russian Federation
Evgenii A. Kolubaev, Dr. Sci. (Eng.), Head of the Laboratory of Local Metallurgy in Additive Technologies
2/4 Akademicheskii Ave., Tomsk 634055, Russian Federation
S. Yu. Tarasov
Russian Federation
Sergei Yu. Tarasov, Dr. Sci. (Eng.), Chief Researcher of the Laboratory of Physics of Surface Hardening
2/4 Akademicheskii Ave., Tomsk 634055, Russian Federation
References
1. Trefilov V.I., Moiseev V.F., Pechkovskii E.P., Gornaya I.D., Vasil’ev A.D. Deformation Hardening and Destruction of Polycrystalline Materials. Kiev: Nauk. Dumka, 1987, 244 p. (In Russ.).
2. Gol’dshtein M.I., Farber V.M. Dispersion Hardening of Steel. Moscow: Metallurgiya, 1979, 208 p. (In Russ.).
3. Polekhina N.A., Litovchenko I.Yu., Kravchenko D.A., Tyumentsev A.N., Chernov V.M., Leont’eva-Smirnova M.V. Strengthening mechanisms of 12 % Cr ferritic-martensitic steels depending on the heat treatment mode. Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki. 2016, vol. 21, no. 3, pp. 1246–1249. (In Russ.). https://doi.org/10.20310/1810-0198-2016-21-3-1246-1249
4. Kuznetsov P.V., Panin V.E., Gal’chenko N.K. Hardening mechanism in low-carbon low-alloy steels with a simultaneous increase in ductility and fracture toughness. Physical Mesomechanics. 2020, vol. 23, no. 4, pp. 347–353. https://doi.org/10.1134/S1029959920040098
5. Aksenova K.V., Nikitina E.N., Ivanov Yu.F., Kosinov D.A. Hardening mechanisms of steels with bainite and martensite structures at compressive deformation. Izvestiya. Ferrous Metallurgy. 2018, vol. 61, no. 10, pp. 787–793. (In Russ.). https://doi.org/10.17073/0368-0797-2018-10-787-793
6. Morales E.V., Betancourt G., Fernandes J.R., Batista G.Z., Bott I.S. Hardening mechanisms in a high wall thickness sour service pipe steel API 5L X65 before and after post-welding heat treatments. Materials Science and Engineering: A. 2022, vol. 851, article 143612. https://doi.org/10.1016/j.msea.2022.143612
7. Zhang D., Zhang M., Lin R., Liu G., Li J., Feng Y. Strengthening and strain hardening mechanisms of a plain medium carbon steel by multiscale lamellar structures. Materials Science and Engineering: A. 2021, vol. 827, article 142091. https://doi.org/10.1016/j.msea.2021.142091
8. Dhua S.K., Ray A., Sarma D.S. Effect of tempering temperatures on the mechanical properties and microstructures of HSLA-100 type copper-bearing steels. Materials Science and Engineering: A. 2001, vol. 318, no. 1-2, pp. 197–210. https://doi.org/10.1016/S0921-5093(01)01259-X
9. Jain D., Isheim D., Hunter A.H., Seidman D.N. Multicomponent high-strength low-alloy steel precipisation-strengthened by sub-nanometric Cu precipitates and M2C carbides. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 2016, vol. 47, no. 8, pp. 3860–3872. https://doi.org/10.1007/s11661-016-3569-5
10. Fine M.E., Vaynman S., Isheim D., Chung Y.-W., Bhat S.P., Hahin C.H. A new paradigm for designing high-fracture-energy steels. Metallurgical and Materials Transactions A. 2010, vol. 41, pp. 3318–3325. https://doi.org/10.1007/s11661-010-0485-y
11. Sun H., Li D., Diao Y., He Y., Yan L., Pang X., Gao K. Nanoscale Cu particle evolution and its impact on the mechanical properties and strengthening mechanism in precipitation-hardening stainless steel. Materials Characterization. 2022, vol. 188, article 111885. https://doi.org/10.1016/j.matchar.2022.111885
12. Dong H., Li Z.C., Somani M.C., Misra R.D.K. The significance of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) structure on the strain hardening behavior and deformation mechanism in copper-bearing antimicrobial austenitic stainless steel. Journal of the Mechanical Behavior of Biomedical Materials. 2021, vol. 119, article 104489. https://doi.org/10.1016/j.jmbbm.2021.104489
13. Kong H.J., Xu C., Bu C.C., Da C., Luan J.H., Jiao Z.B., Chen G., Liu C.T. Hardening mechanisms and impact toughening of a high-strength steel containing low Ni and Cu additions. Acta Materialia. 2019, vol. 172, pp. 150–160. https://doi.org/10.1016/j.actamat.2019.04.041
14. Gol’dshtein M.I., Litvinov V.S., Bronfin B.M. Metallophysics of High-Strength Alloys. Moscow: Metallurgiya, 1986, 312 p. (In Russ.).
15. Trishkina L.I., Cherkasova T.V., Popova N.A., Koneva N.A., Gromov V.E., Aksenova K.V. Dislocation Ensemble: Scalar Dislocation Density and Its Components. Novokuznetsk: SibSIU, 2019, 71 p. (In Russ.).
16. Zykova A.P., Panfilov A.O., Chumaevskii A.V., Vorontsov A.V., Nikonov S.Yu., Moskvichev E.N., Gur’yanov D.A., Savchenko N.L., Tarasov S.Yu., Kolubaev E.A. Formation of microstructures and mechanical characteristics in electron beam additive manufacturing of an aluminum bronze with in-situ adjusting the heat input. Izvestiya vuzov. Fizika. 2022, vol. 65, no. 5, pp. 45–51. (In Russ.). https://doi.org/10.17223/00213411/65/5/45
17. Perevalova O.B., Konovalova E.V., Koneva N.A. Effect of aluminum concentration on the lattice parameters and mean-square displacements of atoms in Cu–Al and Ti–6Al–4V alloys. Bulletin of the Russian Academy of Sciences: Physics. 2019, vol. 83, no. 6, pp. 693–696. https://doi.org/10.3103/S1062873819060236
18. Jahanafrooz A., Hasan F., Lorimer G.W., Ridley N. Microstructural development in complex nickel-aluminum bronzes. Metallurgical and Materials Transactions A. 1983, vol. 14, pp. 1951–1956. https://doi.org/10.1007/BF02662362
19. Dharmendra C., Hadadzadeh A., Amirkhiz B.S., Janaki Ram G.D., Mohammadi M. Microstructural evolution and mechanical behavior of nickel aluminum bronze Cu-9Al-4Fe-4Ni-1Mn fabricated through wire-arc additive manufacturing. Additive Manufacturing. 2019, vol. 30, article 100872. https://doi.org/10.1016/j.addma.2019.100872
20. Bolling G.F., Fainstein D. On vacancy condensation and the origin of dislocations in growth from the melt. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics. 1972, vol. 25, no. 1, pp. 45–66. https://doi.org/10.1080/14786437208229214
21. Zhilyaev A.P., Shakhova I., Morozova A., Belyakov A., Kaibyshev R. Grain refinement kinetics and strengthening mechanisms in Cu–0.3Cr–0.5Zr alloy subjected to intense plastic deformation. Materials Science and Engineering: A. 2016, vol. 654, pp. 131–142. https://doi.org/10.1016/j.msea.2015.12.038
22. Vorontsov A., Astafurov S., Melnikov E., Moskvina V., Kolubaev E., Astafurova E. The microstructure, phase composition and tensile properties of austenitic stainless steel in a wire-feed electron beam melting combined with ultrasonic vibration. Materials Science and Engineering: A. 2021, vol. 820, article 141519. https://doi.org/10.1016/j.msea.2021.141519
23. Koneva N.A., Kozlov E.V. Regularities of substructural hardening. Soviet Physics Journal. 1991, vol. 34, pp. 224–236. https://doi.org/10.1007/BF00894926
Review
For citations:
Zykova A.P., Panfilov A.O., Vorontsov A.V., Kolubaev E.A., Tarasov S.Yu. Hardening mechanisms in stainless steel/aluminum bronze composite fabricated using electron beam additive manufacturing. Izvestiya. Ferrous Metallurgy. 2022;65(10):706-716. (In Russ.) https://doi.org/10.17073/0368-0797-2022-10-706-716