Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Coatings from high-entropy alloys: State and prospects

https://doi.org/10.17073/0368-0797-2022-10-683-692

Abstract

The authors made a brief review of recent publications by foreign and domestic researchers on the structure, phase composition, and properties of films and coatings of five-component high-entropy alloys (HEA) on various substrates and modification of the HEA surface by various types of processing. The main methods of applying films and coatings are considered: magnetron sputtering, thermal sputtering, laser sputtering, and electrodeposition. Particular attention is paid to the deposition of coatings on stainless steels and titanium alloys. The positive change in the tribological, strength properties, and corrosion resistance of film coatings in a wide temperature range is analyzed and possible causes of the observed effects are discussed. The role of solid solution strengthening, formation of fine-grained structure, and the formation of oxide layers enriched with one of the HEA components were taken into account. The authors identified new methods for applying coatings from HEA and subsequent processing. Using Nb and Ti doping as an example, their role in increasing microhardness, wear resistance, and reducing the friction coefficient in coatings were revealed. Electrolytic polishing, electroerosive machining, mechanical polishing and their combination are considered among the methods of HEA surface treatment. A number of works propose a method of powder borating to increase the surface strength and wear resistance of HEAs. The paper considers analysis of works on electron-beam processing as one of the promising and high efficient methods of HEA surface hardening.

About the Authors

V. E. Gromov
Siberian State Industrial University
Russian Federation

Viktor E. Gromov, Dr. Sci. (Phys.-Math.), Prof., Head of the Chair of Science named after V.M. Finkel’

42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007, Russian Federation



S. V. Konovalov
Siberian State Industrial University
Russian Federation

Sergei V. Konovalov, Dr. Sci. (Eng.), Prof., Vice-Rector for Research and Innovation

42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007, Russian Federation



O. A. Peregudov
Omsk State Technical University
Russian Federation

Oleg A. Peregudov, Cand. Sci. (Eng.), Rector’s Assistant for Youth Policy

11 Mira Ave., Omsk 644050, Russian Federation



M. O. Efimov
Siberian State Industrial University
Russian Federation

Mikhail O. Efimov, Postgraduate of the Chair of Science named after V.M. Finkel’

42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007, Russian Federation



Yu. A. Shlyarova
Siberian State Industrial University
Russian Federation

Yuliya A. Shlyarova, Postgraduate of the Chair of Science named after V.M. Finkel’

42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007, Russian Federation



References

1. Gromov V.Е., Konovalov S.V., Ivanov Yu.F., Osintsev K.A. Structure and Properties of High-Entropy Alloys. Springer. Advanced Structured Materials. 2021, vol. 107, 110 p. https://doi.org/10.1007/978-3-030-78364-8

2. Rogachev A.S. Structure, stability and properties of high-entropy alloys. Physics of Metals and Metallography. 2020, vol. 121, no. 8, pp. 733–764. https://doi.org/10.1134/S0031918X20080098

3. Yeh J.-W., Chen S.-K., Lin S.-J., Gan J.-Y., Chin T.-S., Shun T.-T., Tsau C.-H., Chang S.-Y. Nanostructured high entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials. 2004, vol. 6, no. 5, pp. 299–303. https://doi.org/10.1002/adem.200300567

4. Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P. Microstructures and properties of high-entropy alloys. Progress in Materials Science. 2014, vol. 61, pp. 1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001

5. Cantor B. Multicomponent and high entropy alloys. Entropy. 2014, vol. 16, no. 9, pp. 4749–4768. https://doi.org/10.3390/e16094749

6. Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts. Acta Materialia. 2017, vol. 122, pp. 448–511. https://doi.org/10.1016/j.actamat.2016.08.081

7. Zhang W., Liaw P.K., Zhang Y. Science and technology in high-entropy alloys. Science China Materials. 2018, vol. 61, no. 1, pp. 2–22. https://doi.org/10.1007/s40843-017-9195-8

8. Gorban’ V.F., Krapivka N.A., Firstov S.A. High-entropy alloys: Interrelations between electron concentration, phase composition, lattice parameter, and properties. Physics of Metals and Metallography. 2017, vol. 118, no. 10, pp. 970–981. https://doi/org/10.1134/S0031918X17080051

9. Yeh J.-W., Chen S.-K., Gan J.-Y., Lin S.-J, Chin T.-S., Shun T.-T., Tsau C.-H., Chang S.-Y. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metallurgical and Materials Transactions: A. 2004, vol. 35, pp. 2533–2536. https://doi.org/10.1007/s11661-006-0234-4

10. Yeh J.-W. Recent progress in high-entropy alloys. Annales de Chi­mie: Science des Materiaux. 2006, vol. 31, no. 6, pp. 633–648. https://doi.org/10.3166/acsm.31.633-648

11. Tong C.J., Chen Y.-L., Chen S.-K., Yeh J.-W., Shun T.-T., Tsau C.- H., Lin S.-J., Chang S.-Y. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multi-principal elements. Metallurgical and Materials Transactions: A. 2004, vol. 36, pp. 881–893. https://doi.org/10.1007/s11661-005-0283-0

12. Tsai K.-Y., Tsai M.-H., Yeh J.-W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Materialia. 2013, vol. 61, no. 13, pp. 4887–4897. https://doi.org/10.1016/j.actamat.2013.04.058

13. Tsai M.-H., Yeh J.-W. High-entropy alloys: A critical review. Materials Research Letters. 2014, vol. 2, no. 3, pp. 107–123. https://doi.org/10.1080/21663831.2014.912690

14. Alaneme K.K., Bodunrin M.O., Oke S.R. Processing, alloy composition and phase transition effect on the mechanical and corrosion properties of high entropy alloys: A review. Journal of Materials Research Technology. 2016, vol. 5, no. 4, pp. 384–393. https://doi.org/10.1016/j.jmrt.2016.03.004

15. Murty B.S., Yeh J.-W., Ranganathan S., Bhattacharjee P.P. High-Entropy Alloys. 2nd edition. Amsterdam: Elsevier, 2019, 374 p.

16. Zhang Y. High-Entropy Materials. A Brief Introduction. Singapore: Springer Nature, 2019, 159 p.

17. Osintsev K.A., Gromov V.E., Konovalov S.V., Ivanov Yu.F., Panchenko I.A. High-entropy alloys: Structure, mechanical properties, deformation mechanisms and application. Izvestiya. Ferrous Metallurgy. 2021, vol. 64, no. 4, pp. 249–258. (In Russ.). https://doi.org/10.17073/0368-0797-2021-4-249-258

18. Gromov V.E., Rubannikova Yu.A., Konovalov S.V., Osintsev  K.A., Vorob’ev S.V. Generation of increased mechanical properties of Cantor high-entropy alloy. Izvestiya. Ferrous Metallurgy. 2021, vol. 64, no. 8, pp. 599–605. (In Russ.). https://doi.org/10.17073/0368-0797-2021-8-599-605

19. Gorbachev I.I., Popov V.V., Kats-Dem’yanets A., Popov M.L., Eshe­d E. Prediction of the phase composition of high-entropy alloys based on Cr–Nb–Ti–V–Zr using the Calphad method. Physics of Metals and Metallography. 2019, vol. 120, no. 4, pp. 378–386. https://doi.org/10.1134/S0031918X19040069

20. Gorban’ V.F., Krapivka N.A., Firstov S.A., Kurilenko D.V. Role of various parameters in the formation of the physicomechanical pro­perties of high-entropy alloys with BCC lattices. Physics of Metals and Metallography. 2018, vol. 119, no. 5, pp. 477–481. https://doi.org/10.1134/S0031918X18050046

21. Bashev V.F., Kushnerev A.I. Structure and properties of cast and splat-quenched high-entropy Al–Cu–Fe–Ni–Si alloys. Physics of Metals and Metallography. 2017, vol. 118, no. 1, pp. 39–47. https://doi.org/10.1134/S0031918X16100033

22. Shaisultanov D.G., Stepanov N.D., Salishchev G.A., Tikhonovs­ky M.A. Effect of heat treatment on the structure and hardness of high-entropy alloys CoCrFeNiMnVx (x = 0.25, 0.5, 0.75, 1). Physics of Metals and Metallography. 2017, vol. 118, no. 6, pp. 579–790. https://doi.org/10.1134/S0031918X17060084

23. Meshkov E.A., Novoselov I.I., Yanilkin A.V., Rogozhkin S.V., Nikitin A.A., Khomich A.A., Shutov A.S., Tarasov B.A., Danilov S.E., Arbuzov V.L. Experimental and theoretical study of the atomic structure evolution of high-entropy alloys based on Fe, Cr, Ni, Mn, and Co upon thermal and radiation aging. Physics of the Solid State. 2020, vol. 62, no. 3, pp. 389–400. https://doi.org/10.1134/S1063783420030130

24. Kireeva I.V., Chumlyakov Yu.I., Pobedennaya Z.V., Vyrodova A.V., Saraeva A.A., Bessonova I.G., Kuksgauzen I.V., Kuksgauzen D.A. Temperature and orientation dependence of the mechanical properties of Al0.3CoCrFeNi high-entropy alloy single crystals hardened by non-coherent β-phase particles. Russian Physics Journal. 2020, vol. 63, no. 1, pp. 134–141. https://doi.org/10.1007/s11182-020-02012-8

25. Ma Y., Peng G.J., Wen D.H., Zhang T.H. Nanoindentation creep behavior in a CoCrFeCuNi high-entropy alloys film with two different structure states. Materials Science and Engineering: A. 2015, vol. 621, pp. 111–117. https://doi.org/10.1016/j.msea.2014.10.065

26. Wang L.M., Chen G.G., Yeh J.W., Ke S.T. The microstructure and strengthening mechanism of thermal spray coating NixCo0.6Fe0.2CrySizAlTi0.2 high-entropy alloys. Materials Chemistry and Physics. 2011, vol. 126, no. 3, pp. 880–885. https://doi.org/10.1016/j.matchemphys.2010.12.022

27. Zhang H., Wu W., He Y., Li M., Guo S. Formation of core-shell structure in high-entropy alloy coating by laser cladding. Applied Surface Science. 2015, vol. 363, pp. 543–547. https://doi.org/10.1016/j.apsusc.2015.12.059

28. Gao W.Y., Chang C., Li G., Xue Y., Wang J., Zhang Z., Lin X. Study on the laser cladding of FeCrNi coating. Optik. 2019, vol. 178, pp. 950–957. https://doi.org/10.1016/j.ijleo.2018.10.062

29. Rong Z., Wang C., Wang Y., Dong M., You Y., Wang J., Liu H., Liu J., Wang Y., Zhu Z. Microstructure and properties of FeCoNiCrx (x = Mn, Al) high-entropy alloys. Journal of Alloys and Compounds. 2022, vol. 921, article 166061. https://doi.org/10.1016/j.jallcom.2022.166061

30. Chang S.-Y., Lin S.-Y., Huang Y.-C., Wu C.-L. Mechanical properties, deformation behaviors and interface adhesion of (AlCrTaTiZr)Nx multi-component coatings. Surface and Coatings Technology. 2010, vol. 204, no. 20, pp. 3307–3314. https://doi.org/10.1016/j.surfcoat.2010.03.041

31. Shen W.-J., Tsai M.-H., Chang Y.-S., Yeh J.-W. Effects of substrate bias on the structure and mechanical properties of (Al1.5CrNb0.5Si0.5Ti)Nx coatings. Thin Solid Films. 2012, vol. 520, no. 19, pp. 6183–6188. https://doi.org/10.1016/J.TSF.2012.06.002

32. Braic V., Vladescu A., Balaceanu M., Luculescu C.R., Braic M. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings. Surface and Coatings Technology. 2012, vol. 211, pp. 117–121. https://doi.org/10.1016/j.surfcoat.2011.09.033

33. Lin M.-I., Tsai M.-H., Shen W.-J., Yeh J.-W. Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films. Thin So­lid Films. 2010, vol. 518, no. 10, pp. 2732–2737. https://doi.org/10.1016/J.TSF.2009.10.142

34. Zhao Y., Zhang J., Wang Y., Wu K., Liu G., Sun J. Size-dependent mechanical properties and deformation mechanisms in Cu/NbMoTaW nanolaminates. Science China Materials. 2020, vol. 63, no. 3, pp. 444–452. https://doi.org/10.1007/s40843-019-1195-7

35. Cao Z.H., Ma Y.J., Cai Y.P, Wang G.J., Meng X.K. High strength dual-phase high entropy alloys with a tunable nanolayer thickness. Scripta Materialia. 2019, vol. 173, pp. 149–153. https://doi.org/10.1016/j.scriptamat.2019.08.018

36. Xu H., Zang J., Yuan Y., Zhou Y., Tian P., Wang Y. In-situ assembly from graphene encapsulated CoCrFeMnNi high-entropy alloy nanoparticles for improvement corrosion resistance and mechanical properties in metal matrix composites. Journal of Alloys Com­pounsd. 2019, vol. 811, article 152082. https://doi.org/10.1016/j.jallcom.2019.152082

37. Wang Y., Kuang S., Yu X., Wang L., Huang W. Tribo-machanical properties CrNbTiMoZv high-entropy alloy filins synthesized by direct magnetron sputtening. Surface and Coating Technology. 2020, vol. 403, article 126374. https://doi.org/10.1016/j.surfcoat.2020.126374

38. Zhao S., He L.-xin, Fan X.-xia, Liu C.-hai, Long J.-ping, Wang L., Chang H., Wang J., Zhang W. Microstructure and chloride corrosion property of nanocrystalline AlTiCrNiNa high entropy alloy coating on X80 pipeline steel. Surface and Coating Technology. 2019, vol. 375, pp. 215–220. https://doi.org/10.1016/j.surfcoat.2019.07.033

39. Wu H., Zhang S., Wang Z.Y., Zhang C.H., Chen H.T., Chen J. New studies on wear and corrosion behavior of laser cladding FeNiCoCrMox high-entropy alloy coating: the role of Mo. International Journal of Refractory Metals and Hard Materials. 2022, vol. 102, article 105721. https://doi.org/10.1016/j.ijrmhm.2021.105721

40. Ye F., Jiao Z., Yan S., Guo L., Feng L., Yu J. Microbeam plasma arc remanufacturing: effects of Al on microstructure, wear resistance, corrosion resistance and high temperature oxidation resistance of AlxCoCrFeMnNi high-entropy alloy cladding layer. Vacuum. 2020, vol. 174, article 109178. https://doi.org/10.1016/j.vacuum.2020.109178

41. Zhang G., Liu H., Tian X., Chen P., Yang H., Hao J. Microstructure and properties of AlCoCrFeNiSi high-entropy alloy coating on AISI 304 stainless steel by laser cladding. Journal of Materials Engineering and Performance. 2020, vol. 29, pp. 278–288. https://doi.org/10.1007/s11665-020-04586-3

42. Liu H., Zhang T., Sum S., Zhang G., Tian X., Chen P. Microstructure and dislocation density of AlCoCrFeNiSix high-entropy alloy coatings by laser cladding. Materials Letters. 2021, vol. 283, article 128746. https://doi.org/10.1016/j.matlet.2020.128746

43. Ye Q., Feng K., Li Z., Lu F., Li R., Huang J., Wu Y. Microstructure and corrosion properties of CrMnFeCoNi high-entropy alloy coa­ting. Applied Surface Science. 2017, vol. 396, pp. 1420–1426. https://doi.org/10.1016/j.apsusc.2016.11.176

44. Jiang H., Han K., Li D., Cao Z. Synthesis and characterization of AlCo-CrFeNiNbx high entropy alloy coatings by laser cladding. Crystals. 2019, vol. 9, no. 1, article 56. https://doi.org/10.3390/cryst9010056

45. Liu S.S., Zhang M., Zhao G., Wang X.H., Wang J.F. Microstructure and properties of ceramic particle reinforced FeCoNiCrMnTi high entropy alloy laser cladding coating. Intermetallics. 2022, vol. 140, article 107402. https://doi.org/10.1016/j.intermet.2021.107402

46. Zhong M., Wang D., He L., Ye X., Ouyang W., Xu Z., Zhang W., Zhou X. Microstructure and elevated temperature wear behavior of laser cladding NiMnFeCrAl high entropy alloy coating. Optics and Laser Technology. 2022, vol. 149, article 107845. https://doi.org/10.1016/j.optlastec.2022.107845

47. Zhang P., Xu Z., Yao Z., Liu Y., Lin S., He M., Lu S., Wu X. A high-corrosion-resistant high-entropy alloys (HEAs) coatings with single BCC solid solution structure by laser remelting. Materials Letters. 2022, vol. 324, article 132728. https://doi.org/10.1016/j.matlet.2022.132728

48. Liu H., Li X., Liu J., Gao W., Du X., Hao J. Microstructural evolution and properties of dual-layer CoCrFeMnTi0.2 high-entropy alloy coating fabricated by laser cladding. Optics and Laser Technology. 2021, vol. 134, article 106646. https://doi.org/10.1016/j.optlastec.2020.106646

49. Zhang Y., Han T., Xiao M., Shen Y. Effect of Nb content on microstructure and properties of laser cladding FeNiCoCrTi0.5Nbx high-entropy alloy coating. Optik. 2019, vol. 198, article 163316. https://doi.org/10.1016/j.ijleo.2019.163316

50. Liu S.S., Zhang M., Zhao G.L., Wang X.H., Wang J.F. Microstructure and properties of ceramic particle reinforced FeCoNiCrMnTi high entropy alloy laser cladding coating. Intermetallics. 2022, vol. 140, article 107402. https://doi.org/10.1016/j.intermet.2021.107402

51. Jiang X.J., Wang S.Z., Fu H., Chen G.Y., Ran Q.X., Wang S.Q., Han R.H. A novel high entropy alloy coating on Ti-6Al-4V substrate by laser cladding. Materials Letters. 2022, vol. 308, part B, article 131131. https://doi.org/10.1016/j.matlet.2021.131131

52. Deng C., Wang C., Chai L., Wang T., Luo J. Mechanical and chemical properties of CoCrFeNiMo0,2 high entropy alloy coating fabricated on Ti-6Al-4V by laser cladding. Intermetallics. 2022, vol. 144, article 107504. https://doi.org/10.1016/j.intermet.2022.107504

53. Bingyuan H., Shaoyi B., Wenbo D., Weixing H., Xue Y., Fangfang C., Jiajie C., Xianghan G., Sheng Z. Laser-irradiation-induced dynamically recrystallized microstructure and properties of supersonic-particle-deposited Ni-Fe-Cr-Nb-Ti-Al high-entropy alloy coating ting. Materials Characterization. 2022, vol. 183, article 111600. https://doi.org/10.1016/j.matchar.2021.111600

54. Guo J., Goh M., Zhu Z, Lee X., Nai M.L.S., Wei J. On the machining of selective laser melting CoCrFeMnNi high-entropy alloy. Materials and Design. 2018, vol. 153, pp. 211–220. https://doi.org/10.1016/j.matdes.2018.05.012

55. Lindner T., Lobel M., Sattler B., Lampke T. Surface hardening of FCC phase high-entropy alloy system by powder-pack boriding. Surface and Coatings Technology. 2019, vol. 371, pp. 389–394. https://doi.org/10.1016/j.surfcoat.2018.10.017

56. Erdogan A., Günen A., Gök M.S., Zeytin S. Microstructure and mechanical properties of borided CoCrFeNiAl0.25Ti0.5 high entropy alloy produced by powder metallurgy. Vacuum. 2021, vol. 183, article 109820. https://doi.org/10.1016/j.vacuum.2020.109820

57. Ivanov Yu.F., Gromov V.E., Zagulyaev D.V., Konovalov S.V., Rubannikova Yu.A., Semin A.P. Prospects for the application of surface treatment of alloys by electron beams in state of the art technologies. Progress in Physics of Metals. 2020, vol. 21, no. 3, pp. 345–362. https://doi.org/10.15407/ufm.21.03.345

58. Gromov V.E., Konovalov S.V., Ivanov Yu.F., Osintsev K.A., Shlyarova Yu.A., Semin A.P. Structure and Properties of High-Entropy Alloys. Novokuznetsk: Siberian State Industrial University, 2022, 230 p. (In Russ.).

59. Gromov V.E., Konovalov S.V., Ivanov Yu.F., Shliarova Yu.A., Vorobyov S.V., Semin A.P. Structure and properties of the

60. CrMnFeCoNi high-entropy alloy irradiated with a pulsed electron beam. Journal Materials Research and Technology. 2022, vol. 19, pp. 4258–4269. https://doi.org/10.1016/j.jmrt.2022.06.108

61. Osintsev K.A., Gromov V.E., Ivanov Yu.F., Konovalov S.V., Panchenko I.A., Vorobyov S.V. Evolution of structure in AlCoCrFeNi high-entropy alloy irradiated by pulsed electron beam. Metals. 2021, vol. 11, no. 8, article 1228. https://doi.org/10.3390/met11081228

62. Gromov V.E., Ivanov Yu.F., Osintsev K.A., Vorob’ev S.V., Panchenko I.A. Fractography of fracture surface of CrMnFeCoNi high-entropy alloy after electron-beam processing. Izvestiya. Ferrous Metallurgy. 2022, vol. 65, no. 6, pp. 427–433. (In Russ.). https://doi.org/10.17073/0368-0797-2022-6-427-433

63. Gromov V.E., Shlyarova Yu.A., Ivanov Yu.F., Konovalov S.V., Vorob’ev S.V. Effect of electron beam treatment on the fracture behavior of high-entropy Cr-Mn-Fe-Co-Ni alloy. Metallovedenie i termicheskaya obrabotka metallov. 2022, no. 5 (803), pp. 35–39. (In Russ.). https://doi.org/10.30906/mitom.2022.5.35-39

64. Gromov V.E., Ivanov Yu.F., Konovalov S.V., Osintsev K.A. Effect of electron beam treatment on the structure and properties of AlCoCrFeNi high-entropy alloy. CIS Iron and Steel Review. 2021, vol. 22, pp. 72–76. https://doi.org/10.17580/cisisr.2021.02.13

65. Gromov V.E., Ivanov Yu.F., Shlyarova Yu.A., Konovalov S.V., Vorob’ev S.V., Kirillova A.V. Modification of structure and properties of high-entropy CrMnFeCoNi alloy by pulsed electron beam. Problemy chernoi metallurgii i materialovedeniya. 2022, no. 1, pp. 65–76. (In Russ.). https://doi.org/10.54826/19979258_2022_1_65


Review

For citations:


Gromov V.E., Konovalov S.V., Peregudov O.A., Efimov M.O., Shlyarova Yu.A. Coatings from high-entropy alloys: State and prospects. Izvestiya. Ferrous Metallurgy. 2022;65(10):683-692. (In Russ.) https://doi.org/10.17073/0368-0797-2022-10-683-692

Views: 575


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)