Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Features of microstructure, phase composition and strengthening capability of stainless steels with 13 – 17 % Cr

https://doi.org/10.17073/0368-0797-2022-9-644-653

Abstract

The paper considers the study of the features of structure and phase transformations in high-strength, resistant to carbon dioxide corrosion, complex alloyed steels of martensitic, austenitic-martensitic and martensitic-ferritic classes with 13 – 17 % Cr. Influence of the alloying on crystallization and solid state phase transformations was revealed in the temperature range of hot deformation and heat treatment using thermodynamic modeling and experimental study. The effect of quenching temperature on the phase composition and microstructure was analyzed as a result of X-ray diffraction phase analysis, optical and transmission electron microscopy. It was found that increase of nickel content leads to growth of retained austenite fraction resulting in significant decrease of yield strength along with high tensile strength and elongation. To obtain predominantly martensitic microstructure in martensitic-austenitic steel, the multistage heat treatment is proposed including quenching, intermediate annealing for precipitation of dispersed carbides and tempering forming final mechanical properties. The composition of precipitated carbides was evaluated by X-ray microanalysis. The results of the tensile test for steels with martensitic and martensitic-ferritic microstructure showed that required strength grade (σ0.65 ≥ 862 MPa; σв ≥ 931 MPa) was reached after heat treatment including quenching and tempering. Multistage heat treatment including quenching, intermediate annealing and final tempering was resulted in required strength properties of high-nickel martensitic-austenitic steel with 15 % Cr.

About the Authors

D. A. Pumpyanskii
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Dmitrii A. Pumpyanskii, Cand. Sci. (Eng.), Dr. Sci. (Economics), Chairman of the Supervisory Board

19 Mira Str., Yekaterinburg 620002, Russian Federation



I. Yu. Pyshmintsev
LLC “TMK STC”
Russian Federation

Igor’ Yu. Pyshmintsev, Dr. Sci. (Eng.), Prof., General Director

5 Bol'shoi Blvd., Skolkovo, Moscow 143026, Russian Federation



S. M. Bityukov
Russian Scientific Research Institute of the Pipe Industry
Russian Federation

Sergei M. Bityukov, Cand. Sci. (Eng.), Head of the Laboratory

30 Novorossiiskaya Str., Chelyabinsk 454139, Russian Federation



M. A. Gervas’ev
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Mikhail A. Gervas’ev, Dr. Sci.(Eng.), Prof.

19 Mira Str., Yekaterinburg 620002, Russian Federation



A. A. Gusev
LLC “TMK STC”
Russian Federation

Aleksei A. Gusev, Junior Researcher

5 Bol'shoi Blvd., Skolkovo, Moscow 143026, Russian Federation



References

1. Kimura M., Tamari T., Shimamoto K. High Cr stainless steel OCTG with high strength and superior corrosion resistance. JFE GIHO. 2005, no. 9, pp. 7–12.

2. Bellarby J. Well Completion Design. Elsevier, 2009, 726 p.

3. Evaluation of the seabed temperature corrosion and sulphide stress cracking (SSC) resistance of weldable martensitic 13% chromium stainless steel (WMSS). University of Birmingham, 2014. Available at URL: https://etheses.bham.ac.uk/id/eprint/6871/2/Dent16MPhil.pdf (Accessed 12.10.2021).

4. Ishiguro Y., Suzuki T., Eguchi K., Nakahashi T., Sato H. Martensite-based stainless steel OCTG of 15Cr-based and 17Cr based material for sweet and mild sour condition. European Corrosion Congress. 2014, 10 p.

5. Jiang W., Zhao K., Ye D., Li J. Effect of heat treatment on reversed austenite in Cr15 super martensitic stainless steel. Journal of Iron and Steel Research International. 2013, vol. 20, no. 5, pp. 61–65. https://doi.org/10.1016/S1006-706X(13)60099-0

6. Jiang W., Zhao K., Liu X., Zhou Y.H., Ye D., Su J., Yong Q. The influence of heat treatment on microstructure and mechanical pro­perties of Cr15 super martensitic stainless steel. Advanced Materials Research. 2012, vol. 393–395, pp. 440–443. https://doi.org/10.4028/www.scientific.net/AMR.393-395.440

7. Tsai W.-J., Lin C.-K. Corrosion fatigue behaviour of a 15Cr-6Ni precipitation – hardening stainless steel in different tempers. Fatigue & Fracture of Engineering Materials & Structures. 2008, vol. 23, no. 6, pp. 489–497. https://doi.org/10.1046/j.1460-2695.2000.00313.x

8. Mariani F.E., Takeya G.S., Casteletti L.C., Lombardi A.N. Totten G.E. Heat treatment of precipitation-hardening stainless steels alloyed with niobium. Materials Performance and Characterization. 2016, vol. 5, no. 1, pp. 38–46. https://doi.org/10.1520/MPC20150039

9. Wang Z., Li H., Shen Q., Liu W., Zhanyong W. Nano-precipitates evolution and their effects on mechanical properties of 17-4 preci­pitation-hardening stainless steel. Acta Materialia. 2018, vol. 156, pp. 158–171. https://doi.org/10.1016/j.actamat.2018.06.031

10. Prabowo H., Pratesa Y., Munir B., Ulum R., Wahyuadi J. Preliminary assessment of 22Cr and 15Cr materials selection for CO2 enhanced oil recovery program. MATEC Web of Conferences. 2019, vol. 269, article 03014. https://doi.org/10.1051/matecconf/201926903014

11. Pumpyansky D.A., Pyshmintsev I.Yu., Bitiukov S.M., Alieva E.S., Gusev A.A., Mikhailov S.B., Lobanov M.L. Features of phase transformations in martensitic steel for high-strength stainless oil country tubular goods (OCTG). Metallurg. 2021, no. 11, pp. 35–42. (In Russ.). https://doi.org/10.52351/00260827_2021_11_35

12. Alekseev V.I., Yusupov V.S., Lazarenko G.Yu. Mechanism of influence of molybdenum and copper on anticorrosion properties of steel. Perspektivnye materialy. 2009, no. 6, pp. 21–29. (In Russ.).

13. Chenna Krishna S., Pant B., Jha A., George K.M., Gangwar N.K. Microstructure and properties of 15Cr-5Ni-1Mo-1W martensitic stainless steel. Steel Research International. 2015, no. 86, no. 1, pp. 51–58. https://doi.org/10.1002/srin.201400035

14. Kumar A.V., Gupta R.K., Narahari Р., Amruth M., Ramkumar P., Narahari P. Development and characterization of 15Cr-5Ni-1W martensitic precipitation hardening stainless steel for aerospace app­lications. Materials Science Forum. 2015, vol. 830–831, pp. 15–18. https://doi.org/10.4028/www.scientific.net/MSF.830-831.15

15. Potak Ya.M. High-Strength Steels. Moscow: Metallurgiya, 1972, 208 p. (In Russ.).

16. Thermo-Calc. Available at URL: https://thermocalc.com/products/thermo-calc (Accessed 11.04.2020).

17. Copper in Ferrous Metals: Coll. of Papers. Le Mei I., Shetka M.-D. eds. Moscow: Metallurgiya, 1988, 311 p. (In Russ.).

18. Pickering F.Brian. Physical Metallurgy and the Design of Steels. Applied Science Publishers, 1978, 275 p. (Russ. ed.: Pickering F.B. Fizicheskoe metallovedenie i razrabotka stalei. Moscow: Metallurgiya, 1982, 182 p.)

19. Tarasenko L.V., Unchikova M.V. Effect of double aging on mechanical and corrosion properties of maraging steel 06Cr14Ni6Cu2MoNbTi. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Seriya Mashinostroenie. 2014, no. 4, pp. 123–130. (In Russ.).

20. Tarasenko L.V., Unchikova M.V. Heat treatment of corrosion-resistant steel for manufacture of force-measuring elastic elements. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Seriya Mashinostroenie. 2007, no. 2, pp. 82–88. (In Russ.).

21. ASM HANDBOOK. Properties and Selection: Irons, Steels, and High-Performance Alloys. Vol. 1. ASM International, 1990, 1063 p. https://doi.org/10.31399/asm.hb.v01.9781627081610

22. ASM Specialty Handbook: Stainless Steels. Davis J.R. ed. ASM International, 1994, 576 p.

23. DIN EN 10088:1-2014 Stainless steels – Part 1: List of stainless steels. 01.12.2014, 50 p.

24. Gooch T. Welding martensitic stainless steels. Welding Institute Research Bulletin. 1977, no. 18, pp. 343–349.

25. Hu X., Luo X., Xiao N., Li D. Effects of δ-ferrite on the microstructure and mechanical properties in a tungsten-alloyed 10 % Cr ultra-supercritical steel. Acta Metallurgica Sinica. 2009, vol. 45, no. 5, pp. 553–558.

26. Korneev A.E., Gromov A.F., Kiselev A.M. Effect of δ-ferrite on the properties of martensitic steels. Metal Science and Heat Treatment. 2013, no. 55, pp. 445–450. http://dx.doi.org/10.1007/s11041-013-9652-2


Review

For citations:


Pumpyanskii D.A., Pyshmintsev I.Yu., Bityukov S.M., Gervas’ev M.A., Gusev A.A. Features of microstructure, phase composition and strengthening capability of stainless steels with 13 – 17 % Cr. Izvestiya. Ferrous Metallurgy. 2022;65(9):644-653. (In Russ.) https://doi.org/10.17073/0368-0797-2022-9-644-653

Views: 493


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)