Properties of coatings obtained by supersonic electric arc metallization with aerosol fluxing
https://doi.org/10.17073/0368-0797-2022-9-637-643
Abstract
The method of electric arc metallization has both undeniable advantages and some disadvantages. For example, there is a burnout of alloying elements and a high content of oxides in the applied coating. Aerosol fluxing during metallization can solve this problem and neutralize the negative oxidative effect of interaction of the applied metal with air oxygen. This article discusses an effective method to improve physical and mechanical properties of an electrometallization coating using aerosol fluxing. The essence of this method is introduction of an aerosol together with compressed air into a torch of molten metal. This aerosol consists of an aqueous solution of the chemical inorganic materials. Such the aqueous solution is poured into a hydrodispergator, which is connected to the air channel of the metallizer. Aerosol fluxing makes it possible to deoxidize and ligate metal during electric arc metallization. As a result, the physical and mechanical properties of the metal increase. The paper considers the results of topographic studies of electrometallization coatings. Formed coatings have a structure with grain sizes from 200 to 2500 nm and also have pronounced and subtle grain boundaries. Aerosol fluxing with electric arc metallization forms a coating with finer-grained structure, which increases their strength. It is established that formed coatings have a finer-grained structure and increased strength when using aerosol fluxing during electric arc metallization. Metallographic studies showed that the thickness of the electrometallization coating varies from 2490 µm to 2586 µm. The use of aerosol fluxing during electric arc metallization does not significantly affect the coating thickness. The microhardness of electrometallization coatings was studied. This study showed that the use of aerosol flux consisting of Na2CO3 , Na3AlF6 , Na2B4O7 during metallization increases microhardness of electrometallization coatings by 1.6 – 1.9 times.
Keywords
About the Authors
A. V. KolomeichenkoRussian Federation
Aleksandr V. Kolomeichenko, Dr. Sci. (Eng.), Prof., Head of the Department of Advanced Technologies
2 Aviamotornaya Str., Moscow 125438, Russian Federation
V. N. Logachev
Russian Federation
Vladimir N. Logachev, Cand. Sci. (Eng.), Assist. Prof. of the Chair of Reliability and Repair of Machines
69 Generala Rodina Str., Orel 302019, Russian Federation
V. B. Deev
Russian Federation
Vladislav B. Deev, Prof. of the Faculty of Machine Engineering and Automation, Wuhan Textile University; Dr. Sci. (Eng.), Prof. of the Chair of Metal Forming, Chief Researcher of the Laboratory “Ultrafine-Grained Metal Materials”, National University of Science and Technology “MISIS”
34 Hongshance Road, Wuhan University, Wuhan, Wuchang District, Hubei Province, 430072, China
4 Leninskii Ave., Moscow 119049, Russian Federation
N. Yu. Dudareva
Russian Federation
Natal’ya Yu. Dudareva, Dr. Sci. (Eng.), Assist. Prof. of the Chair of Internal Combustion Engines
12 K. Marksa Str., Ufa, Republic of Bashkortostan 450000, Russian Federation
References
1. Korobov Yu.S., Boronenkov V.N. Calculating the parameters of movement, heating and oxidation of particles in electric arc metallising. Welding International. 1998, vol. 12, no. 9, pp. 726–730. http://doi.org/10.1080/09507119809452043
2. Korobov Yu.S., Boronenkov V.N. Kinetics of interaction of sprayed metal with oxygen in electric arc metallising. Welding International. 2004, vol. 18, no. 1, pp. 42-48. http://doi.org/10.1533/wint.2004.3242
3. Lyalyakin V.P., Murzaev V.P., Solovev R.Yu., Slinko D.B. Physico-mechanical properties of coatings produced by electric arc metallising with flux-cored wires. Welding International. 2017, vol. 31, no. 9, pp. 729–732. http://doi.org/10.1080/09507116.2017.1315078
4. Sergeev V.V., Spiridonov Yu.L., Farakhshin I.I. Reconditioning crankshafts of domestic and foreign diesel engines by electric arc metallising. Welding International. 2004, vol. 18, no. 7, pp. 578–580.
5. http://doi.org/10.1533/wint.2004.3331
6. Şerban V.A., Roşu R.A., Bucur A.I., Pascu D.R. Deposition of titanium nitride layers by electric arc-reactive plasma spraying method. Applied Surface Science. 2013, vol. 265, pp. 245–249. http://doi.org/10.1016/j.apsusc.2012.10.187
7. Newbery A.P., Grant P.S., Neiser R.A. The velocity and temperature of steel droplets during electric arc spraying. Surface and Coatings Technology. 2005, vol. 195, no. 1, pp. 91–101. http://doi.org/10.1016/j.surfcoat.2004.12.035
8. Sokolov Yu.V., Zheleznyǐ V.S. The fractal structure of a carbon deposit formed during graphite spraying in an electric arc. Technical Physics Letters. 2003, vol. 29, no. 4, pp. 350–351. http://doi.org/10.1134/1.1573314
9. Royanov V.A., Bovikov V.I. Equipment for electric arc metallizing with pulsed discharge of the air-spraying jet. Welding International. 2016, vol. 30, no. 4, pp. 315–318. http://doi.org/10.1080/01431161.2015.1058006
10. Aleksandrov V.P., Glupanov V.N. Cleaning asipiration air from chambers for electric-arc metal spraying. Chemical and Petroleum Engineering. 2002, vol. 38, no. 1–2, pp. 94–95. http://doi.org/10.1023/A:1015242825702
11. Xing S.B., Xiao K., Li X.-G., Liu A.Q., Li L., Wang E.Q. Corrosion resistance of Zn-Al-Mg-La-Ce coatings by electric arc spraying. Beijing Keji Daxue Xuebao /Journal of University of Science and Technology Beijing. 2012, vol. 34, no. 10, pp. 1167–1172.
12. Pereira Dos Santos L., Flores-Sahagun T.S., Paredes R.S.C., Bozz Ferla S.M., Satyanarayana K.G. Study on the deposition of stainless steel on polymeric substrates by arc electric thermal spraying. Materials Research Express. 2019, vol. 6, no. 10, article 105314. http://doi.org/10.1088/2053-1591/ab2a2f
13. Kirsankin A.A., Kalaida T.A., Kaplan M.A., Smirnov M.A., Ivannikov A.Yu., Sevostyanov M.A. Characterization of spherical stainless steel powders prepared by electric arc spraying process. IOP Conf. Ser.: Mater. Sci. Eng. 2020, vol. 848, article 012033. http://doi.org/10.1088/1757-899X/848/1/012033
14. Lyalyakin V.P. Restoration of machine parts as an important direction of import substitution in agro-industrial complex. Remont. Vosstanovlenie. Modernizatsiya. 2019, no. 9, pp. 3–5. (In Russ.).
15. Vorob’ev P.A., Yusim M.Yu., Litovchenko N.N., Denisov V.I. Aerosol fluxing method for electric arc metallization. Trudy GOSNITI. 2008, vol. 101, pp. 201-204. (In Russ.).
16. Matyushkin B.A., Denisov V.I., Tolkachev A.A. Adjustable change in percentage of elements in working layer during parts restoration by electric arc metallization. Trudy GOSNITI. 2017, vol. 127, pp. 166-170. (In Russ.).
17. Kravchenko I.N., Puzryakov A.F., Korneev V.M., Pastukhov A.G., Kolomeichenko A.V., Puzryakov A.A. Technological Processes in Technical Service of Machines and Equipment. Moscow: INFRA-M,
18. , 346 p. (In Russ.).
19. Korneev V.M., Novikov V.S., Kravchenko I.N., etc. Machine Repair Technology. Korneev V.M. ed. Moscow: INFRA-M, 2018, 312 p. (In Russ.).
20. Gorokhov V.A., Devoino O.G., Ivanov V.P., etc. Restoring the Wear of Machine Parts. Stary Oskol: TNT, 2020, 380 p. (In Russ.).
21. Olefirenko N.A., Ovchinnikov V.V. Technological features of restoration of crankshafts of freon compressors by electric arc metallization. Izvestiya Moskovskogo gosudarstvennogo industrial’nogo universiteta. 2012, vol. 25, no. 1, pp. 27–31. (In Russ.).
22. Sergeev V.V., Kulikov P.R. Restoration of crankshafts of diesel engines by supersonic electric arc metallization. Sborka v mashinostroenii, priborostroenii. 2008, no. 10, pp. 37-40. (In Russ.).
23. Dudan A.V., Vorona T.V., Dovzhuk S.A., Brusilo Yu.V., Salimov R.M., Volkov Yu.V. Selection of equipment for hardening and restoration of car parts by electric arc spraying. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya V: Promyshlennost’. Prikladnye nauki. 2014, no. 11, pp. 121–126. (In Russ.).
24. Litovchenko N.N., Lyalyakin V.P., Kolomeichenko A.V., etc. Electric Arc Metallization. Theory, Technologies, Equipment: Monograph. Kursk: Universitetskaya kniga, 2022, 203 p. (In Russ.).
25. Lyalyakin V.P., Murzaev V.P., Solov’ev R.Yu., Slinko D.B. Physical and mechanical properties of coatings obtained by electric arc metallization with powder wires. Tekhnologiya mashinostroeniya. 2017, no. 5, pp. 24-28. (In Russ.).
26. Solov’ev R.Yu., Vorob’ov P.A., Litovchenko N.N. Metal-carbothermal methods for reducing oxidation of dispersed metal during electric arc metallization. Svarochnoe proizvodstvo. 2012, no. 3, pp. 43–47. (In Russ.).
27. Matyushkin B.A., Denisov V.I., Tolkachev A.A. Technological features of electric arc metallization in agro-industrial complex. Tekhnologiya mashinostroeniya. 2016, no. 10, pp. 32-37. (In Russ.).
28. Litovchenko I.N., Denisov V.I., Vorob’ev P.A., Yusim M.Yu. Restoration of parts by electric arc metallization. Tekhnika v sel’skom khozyaistve. 2008, no. 2, pp. 28–32. (In Russ.).
29. Kolomeichenko A.V., Logachev V.N., Izmalkov A.A. Expediency of using aerosol fluxing during electric arc metallization. Vestnik Bashkirskogo gosudarstvennogo agrarnogo universiteta. 2018, no. 3(47), pp. 62–68. (In Russ.).
30. Logachev V.N., Kolomeichenko A.V., Kuznetsov Yu.A., Solovev R. Yu., Denisov V.I., Sharifullin S.N. Aerosol fluxing in electro arc metallization. IOP Conference Series: Materials Science and Engineering. 2017, vol. 240, article 012049. http://doi.org/10.1088/1757-899X/240/1/012049
31. Boronenkov V.N., Korobov Yu.S. Fundamentals of Arc Metallization. Physical and Chemical Laws. Yekaterinburg: Izd-vo Ural’skogo universiteta, 2012, 268 p. (In Russ.).
32. Pokhmurska H., Dovhunyk V., Student M., Bielanska E., Beltowska E. Tribological properties of arc sprayed coatings obtained from FeCrB and FeCr based powder wires. Surface & Coating Technology. 2002, vol. 151–152, pp. 490–194. https://doi.org/10.1016/S0257-8972(01)01577-8
33. Pokhmurskii V., Dovhunyk V., Student M., Pokhmurska H., Vynar V., Sydorak I. Triboelectrochemical behaviour of arc sprayed coatings on aluminium alloys. Inzynieria Powierzchni. 2008, no. 1, pp. 9–13. (In Pol.)
34. Korobov Ju., Boronenkov V. Modeling of liquid metal oxidation at arc metallization. Mathematical Modeling and Simulation of Metal Technologies. Int. Conf. MMT-2000, Israel, Ariel, Nov. 13-15, 2000: Proceedings. Israel, Ariel, 2000, pp. 683–692.
35. Litovchenko N.N. A three-electrode electric arc metallising gun – innovation project. Welding International. 2016, vol. 30, no. 7, pp. 560-562. http://doi.org/10.1080/09507116.2015.1099893
36. Konovalov A.V., Kurkin A.S., Makarov E.L., etc. Theory of Welding Processes. Nerovnyi V.M. ed. Moscow: Izd-vo MSTU im. N.E. Baumana, 2007, 559 p. (In Russ.).
37. Pavlov A.Yu., Ovchinnikov V.V., Shlyapin A.D. Fundamentals of Gas-Thermal Spraying of Protective Coatings. Moscow: Vologda: Infra-Inzheneriya, 2020, 300 p. (In Russ.).
38. Baldaev L.Kh., Borisov V.N., Vakhalin V.A. Gas-Thermal Spraying: Tutorial. Moscow: Market DS, 2007, 344 p. (In Russ.).
39. Bobrov G.V., Il’in A.A. Application of Inorganic Coatings (Theory, Technology, Equipment): Tutorial. Moscow: Intermet Inzhiniring, 2004, 624 p. (In Russ.).
Review
For citations:
Kolomeichenko A.V., Logachev V.N., Deev V.B., Dudareva N.Yu. Properties of coatings obtained by supersonic electric arc metallization with aerosol fluxing. Izvestiya. Ferrous Metallurgy. 2022;65(9):637-643. (In Russ.) https://doi.org/10.17073/0368-0797-2022-9-637-643