Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Control of Cantor CoCrFeMnNi high-entropy alloy mechanical properties

https://doi.org/10.17073/0368-0797-2022-8-563-572

Abstract

The paper summarizes the research on the control of Cantor CoCrFeMnNi high-entropy alloy (HEA) mechanical properties. We studied the effects of alloying with aluminum, vanadium, manganese, titanium, silicon, carbon, and copper on the hardening of HEAs made by vacuum arc melting, laser melting, arc melting, drip casting, mechanical alloying with subsequent plasma sintering, gas sputtering followed by the shock wave and static compaction. It was shown that the addition of 2.5 % TiC and 5 % WC significantly improves the tensile strength, but reduces the elongation to failure. In the 4.4 – 155 µm grain size range, the tensile strength increases as the grain size decreases. The strength and yield limits for any grain size increase as the temperature decreases. Intensive plastic deformation forming nanoscale (~50 nm) grains significantly increases the tensile strength (up to 1,950 MPa) and hardness (up to 520 HV). The strength and ductility can be adjusted with subsequent isochronous and isothermal annealing. The formation of nanostructure phase states with shock compression, mechanical alloying, and subsequent spark plasma sintering significantly increase the tensile strength at room temperature while maintaining excellent plasticity (relative elongation ~28 %). We proposed electron-beam processing (EBP) to control the HEA mechanical properties. We analyzed the deformation curves for the HEA made by wire arc additive manufacturing after EBP at 10 – 30 J/cm2 electron beam energy density and made some assumptions about the reasons for the strength and ductility decrease. We also compared the mechanical properties of Cantor alloys made by various processes and found the reasons for the spread of the strength and ductility values.

About the Authors

V. E. Gromov
Siberian State Industrial University
Russian Federation

Viktor E. Gromov, Dr. Sci. (Phys.-Math.), Prof., Head of the Chair of Science named after V.M. Finkel’

42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007, Russian Federation



S. V. Konovalov
Siberian State Industrial University; Samara National Research University
Russian Federation

Sergei V. Konovalov, Dr. Sci. (Eng.), Prof., Head of the Chair of Metals Technology and Aviation Materials, Samara National Research University; Chief Researcher of Department of Scientific Researches, Siberian State Industrial University

42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007, Russian Federation

34 Moskovskoe Route, Samara 443086, Russian Federation



Yu. A. Shlyarova
Siberian State Industrial University
Russian Federation

Yuliya A. Shlyarova, Postgraduate of the Chair of Science named after V.M. Finkel’, Research Associate of the Laboratory of Electron Microscopy and Image Processing

42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007, Russian Federation



M. O. Efimov
Siberian State Industrial University
Russian Federation

Michail O. Efimov, Engineer of Department of Scientific Research

42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007, Russian Federation



I. A. Panchenko
Siberian State Industrial University
Russian Federation

Irina A. Panchenko, Cand. Sci. (Eng.), Head of the Laboratory of Elect­ron Microscopy and Image Processing

42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007, Russian Federation



References

1. George E.P., Curtin W.A., Tasan C.C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Materialia. 2020, vol. 188, pp. 435–474. https://doi.org/10.1016/j.actamat.2019.12.015

2. Shivam V., Basu J., Pandey V.K., Shadangi Y., Mukhopadhyay N.K. Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy. Advanced Powder Technology. 2018, vol. 29, no. 9, pp. 2221–2230. https://doi.org/10.1016/j.apt.2018.06.006

3. Ganesh U.L., Raghavendra H. Review on the transition from conventional to multi-component-based nano-high-entropy alloys-NHEAs. Journal of Thermal Analysis and Calorimetry. 2020, vol. 139, pp. 207–216. https://doi.org/10.1007/s10973-019-08360-z

4. Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts. Acta Materialia. 2017, vol. 122, pp. 448–511. https://doi.org/10.1016/j.actamat.2016.08.081

5. Zhang W., Liaw P.K., Zhang Y. Science and technology in high-entropy alloys. Science China Materials. 2018, vol. 61, no. 1, pp. 2–22. https://doi.org/10.1007/s40843-017-9195-8

6. Osintsev K.A., Gromov V.E., Konovalov S.V., Ivanov Yu.F., Panchenko I.A. High-entropy alloys: Structure, mechanical properties, deformation mechanisms and application. Izvestiya. Ferrous Metallurgy. 2021, vol. 64, no. 4, pp. 249–258. (In Russ.). https://doi.org/10.17073/0368-0797-2021-4-249-258

7. Gromov V.Е., Konovalov S.V., Ivanov Yu.F., Osintsev K.A. High-entropy alloys of AlCoCrFeNi-system. Advanced Structured Materials, 2021, vol. 107, pp. 79–110. https://doi.org/10.1007/978-3-030-78364-8_6

8. Zhang T., Xin L., Wu F., Zhao R., Xiang J., Chen M., Jiang S., Huang Y., Chen S. Microstructure and mechanical of FexCoCrNiMn high-entropy alloys. Journal of Materials Science and Technology. 2019, vol. 35, no. 10, pp. 2331–2335. https://doi.org/10.1016/j.jmst.2019.05.050

9. Gludovatz B.A., Hohenwarter A., Catoor D., Chang E.H., George E.P., Ritchie R.O. Fracture-resistant high-entropy alloy for cryoge­nic applications. Science. 2014, vol. 345, no. 6201,

10. pp. 1153–1158. https://doi.org/10.1126/science.1254581

11. Listyawan T.A., Lee H., Park N., Lee U. Microstructure and mechanical properties of CoCrFeMnNi high entropy alloy with ultrasonic nanocrystal modification process. Journal of Materials Science and Technology. 2020, vol. 57, pp. 123–130. https://doi.org/10.1016/j.jmst.2020.02.083

12. Meng F., Baker I. Nitriding of a high entropy FeNiMnAlCr alloy. Journal of Alloys and Compounds. 2015, vol. 645, pp. 376–381. https://doi.org/10.1016/j.jallcom.2015.05.021

13. Lindner T., Löbel M., Sattler B., Lampke T. Surface hardening of FCC phase high-entropy alloy system by powder-pack boriding. Surface and Coatings Technology. 2019, vol. 371, pp. 389–394. https://doi.org/10.1016/j.surfcoat.2018.10.017

14. Proskyrovsky D.I., Rotshtein V.P., Ozur G.E., Ivanov Yu.F., Markov A.B. Physical foundations for surface treatment of materials with low energy, high current electron beams. Surface and Coatings Technology. 2000, vol. 125, no. 1-3, pp. 49–56. https://doi.org/10.1016/S0257-8972(99)00604-0

15. Valkov S., Ormanova M., Petrov P. Electron-beam surface treatment of metals and alloys: Techniques and trends. Metals. 2020, vol. 10, no. 9, article 10091219. https://doi.org/10.3390/met10091219

16. Konovalov S., Ivanov Y., Gromov V., Panchenko I. Fatigue-induced evolution of AISI 310S steel microstructure after electron beam treatment. Materials. 2020, vol. 13, no. 20, article 4567. https://doi.org/10.3390/ma13204567

17. Zhang C., Lv P., Xia H., Yang Z., Konovalov S., Chen X., Guan Q. The microstructure and properties of nanostructured Cr-Al alloying layer fabricated high-current pulsed electron beam. Vacuum. 2019, vol. 167, pp. 263–270. https://doi.org/10.1016/j.vacuum.2019.06.022

18. Konovalov S.V., Komissarova I.A., Kosinov D.A., Ivanov Yu.F., Ivanova O.V., Gromov V.E. Structure of titanium alloy, modified by electron beams and destroyed during fatigue. Letters on Materials. 2017, vol. 7, no. 3, pp. 266–271. https://doi.org/10.22226/2410-3535-2017-3-266-271

19. Lyu P., Peng T., Miao Y., Liu Z., Gao Q., Zhang C., Jin Y., Guan Q., Cai J. Microstructure and properties of CoCrFeNiMo0.2 high-entropy alloy enhanced by high-current pulsed electron beam. Surface and Coatings Technology. 2021, vol. 410, article 126911. https://doi.org/10.1016/j.surfcoat.2021.126911

20. Osintsev K., Gromov V., Ivanov Y., Konovalov S., Panchenko I., Vorobyev S. Evolution of structure in AlCoCrFeNi high-entropy alloy irradiated by a pulsed electron beam. Metals. 2021, vol. 11, no. 8, article 1228. https://doi.org/10.3390/met11081228

21. He J.Y., Liu W.H., Wang H., Wu Y., Liu X.J., Nieh T.G., Lu Z.P. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Materialia. 2014, vol. 62, pp. 105–113. https://doi.org/10.1016/j.actamat.2013.09.037

22. Stepanov N.D., Shaysultanov D.G., Salishchev G.A., Tikhonov­sky M.A., Oleynik E.E., Tortika A.S., Senkov O.N. Effect of V content on microstructure and mechanical properties of the

23. CoCrFeMnNiVx high entropy alloys. Journal of Alloys and Compounds. 2015, vol. 628, pp. 170–185. https://doi.org/10.1016/j.jallcom.2014.12.157

24. Chen P., Yang C., Li S., Attallah M.M., Yan M. In-situ alloyed, oxide-dispersion-strengthened CoCrFeMnNi high entropy alloy fabricated via laser powder bed fusion. Materials & Design. 2020, vol. 194, article 108966. https://doi.org/10.1016/j.matdes.2020.108966

25. Yamanaka S., Ikeda K-i., Miura S. The effect of titanium and silicon addition on phase equilibrium and mechanical properties of CoCrFeMnNi-based high entropy alloy. Journal of Materials Research. 2021, vol. 36, no. 10, pp. 2056–2070. https://doi.org/10.1557/s43578-021-00251-0

26. Xian X., Lin L., Zhong Z., Zhang C., Chen C., Song K., Cheng J., Wu Y. Precipitation and its strengthening of Cu-rich phase in CrMnFeCoNiCux high-entropy alloys. Materials Science and Engineering: A. 2018, vol. 713, pp. 134–140. https://doi.org/10.1016/j.msea.2017.12.060

27. Lu Y., Mazilkin A., Boll T., Stepanov N., Zherebtzov S., Sali­shchev G., Ódore É., Ungar T., Lavernia E., Hahn H., Ivanisenko Y. Influence of carbon on the mechanical behavior and microstructure evolution of CoCrFeMnNi processed by high pressure torsion. Materialia. 2021, vol. 16, article 101059. https://doi.org/10.1016/j.mtla.2021.101059

28. Zhang X., Li R., Huang L., Amar A., Wu C., Le G., Liu X., Guan D., Yang G., Li J. Influence of in-situ and ex-situ precipitations on microstructure and mechanical properties of additive manufacturing CoCrFeMnNi high-entropy alloys. Vacuum. 2021, vol. 187, artic­le 110111. https://doi.org/10.1016/j.vacuum.2021.110111

29. Ji W., Wang W., Wang H., Zhang J., Wang Y., Zhang F., Fu Z. Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics. 2015, vol. 56, pp. 24–27. https://doi.org/10.1016/j.intermet.2014.08.008

30. Yang T., Cai B., Shi Y., Wang M., Zhang G. Preparation of nanostructured CoCrFeMnNi high entropy alloy by hot pressing sintering gas atomized powders. Micron. 2021, vol. 147, pp. article 103082. https://doi.org/10.1016/j.micron.2021.103082

31. Otto F., Dlouhý A., Somsen Ch., Bei H., Eggeler G., George E.P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia. 2013, vol. 61, no. 15, pp. 5743–5755. https://doi.org/10.1016/j.actamat.2013.06.018

32. Schuh B., Mendez-Martin F., Völker B., George E.P., Clemens H., Pippan R., Hohenwarter A. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Materialia. 2015, vol. 96, pp. 258–268. https://doi.org/10.1016/j.actamat.2015.06.025

33. Yim D., Kim W., Praveen S., Jang M.J., Bae J.W., Moon J., Kim E., Hong S.-J., Kim H.S. Shock wave compaction and sintering of mechanically alloyed CoCrFeMnNi high-entropy alloy powders. Materials Science and Engineering: A. 2017, vol. 708, pp. 291–300. https://doi.org/10.1016/j.msea.2017.09.132


Review

For citations:


Gromov V.E., Konovalov S.V., Shlyarova Yu.A., Efimov M.O., Panchenko I.A. Control of Cantor CoCrFeMnNi high-entropy alloy mechanical properties. Izvestiya. Ferrous Metallurgy. 2022;65(8):563-572. https://doi.org/10.17073/0368-0797-2022-8-563-572

Views: 458


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)