Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Wagner coefficient of interaction between hydrogen and nickel in liquid steel

https://doi.org/10.17073/0368-0797-2022-7-519-525

Abstract

The simplest model of the structure and interatomic interaction is applied to hydrogen solutions in liquid alloys of Fe – Ni system, which earlier (2019 – 2021) was used by the authors for nitrogen solutions in alloys of Fe – Cr, Fe – Mn, Fe – Ni, Ni – Co and Ni – Cr systems. The theory is based on lattice model of the Fe – Ni solutions. The model assumes a FCC lattice. In the sites of this lattice are the atoms of Fe and Ni. Hydrogen atoms are located in octahedral interstices. The hydrogen atom interacts only with the metal atoms located in the lattice sites neighboring to it. This interaction is pairwise. It is assumed that the energy of this interaction depends neither on the alloy composition nor on the temperature. For simplicity it was assumed that liquid solutions in the Fe – Ni system are perfect. Within the framework of the proposed theory an expression is presented for the Wagner coefficient of interaction between hydrogen and nickel in liquid steel. The right-hand part of the appropriate formula is a function of the ratio of the Sieverts law constants for hydrogen solubility in liquid iron and in liquid nickel. The values of these constants for a temperature of 1873 K are taken equal to KH(Fe) = 0,0025, KH(Ni) = 0,0040 wt. %. At the same time, an estimate was obtained for the Wagner coefficient of interaction between hydrogen and nickel in liquid steel  εHNi = –0,54. This corresponds to the value of the Langenberg interaction coefficient eHNi = –0,002, wich is very close to the experimental estimate eHNi = –0,0022.

About the Authors

L. A. Bolʼshov
Vologda State University
Russian Federation

Leonid A. Bolʼshov, Dr. Sci. (Phys.–Math.), Prof. of the Chair of Mathe­matics and Informatics

15 Lenina Str., Vologda 16000, Russian Federation



S. K. Korneichuk
Vologda State University
Russian Federation

Svetlana K. Korneichuk, Cand. Sci. (Phys.–Math.), Assist. Prof. of the Chair of Physics

15 Lenina Str., Vologda 16000, Russian Federation



E. L. Bolʼshova
Vologda State University
Russian Federation

Elina L. Bolʼshova, Assist. Prof. of the Chair of English

15 Lenina Str., Vologda 16000, Russian Federation



References

1. Wagner C. Thermodynamics of Alloys. Cambridge: Addison-Wesley Press, 1952, 162 p. (Russ. ed.: Vagner K. Termodinamika splavov. Moscow: Metallurgiya, 1957, 179 p.).

2. Langenberg F.C. Predicting solubility of nitrogen in molten steel. Journal of Metals. 1956, vol. 8, no. 8, pp. 1099–1101.

3. Bolʼshov L.A. On solubility of nitrogen in liquid multicomponent iron alloys with transition metals. Izvestiya. Ferrous Metallurgy. 1982, no. 1, pp. 8–10. (In Russ.).

4. Bolʼshov L.A. Statistical theory of multicomponent and low-concentration alloys: Dr. Phys.-Math. Sci. Diss. Moscow: 1991, 496 p. (In Russ.).

5. Schürmann E., Kättlitz W. Äquivalente Wirkung der Legierungselemente auf die konzentrations- und temperaturabhängige Wasserstofflöslichkeit in eisenreichen Drei- und Mehrstoffschmelzen. Archiv für das Eisenhüttenwesen. 1981, vol. 52, no. 8, pp. 295–301. (In Germ.).

6. Apa L. Solubility of hydrogen in nickel, cobalt and their alloys calculated by the alloying element equivalence method. Comparison with solubility in iron alloys. Metalurgia (Bucharest). 1988, vol. 40, no. 5, pp. 236–242. (In Romanian).

7. Burylev B.P. Solubility of hydrogen in liquid iron alloys. Izvestiya. Ferrous Metallurgy. 1965, no. 2, pp. 17–23. (In Russ.).

8. Jiang G.-R., Li Y.-X., Liu Y. Calculation of hydrogen solubility in molten alloys. Transactions of Nonferrous Metals Society of China. 2011, vol. 21, no. 5, pp. 1130–1135. https://doi.org/10.1016/S1003-6326(11)60832-7

9. Lupis C.H.P. Chemical Thermodynamics of Materials. New York: North Holland, 1983, 581 p. (Russ. ed.: Lupis K. Khimicheskaya termodinamika materialov. Moscow: Metallurgiya, 1989, 503 p.).

10. Sieverts A. Zur Kenntnis der Okklusion und Diffusion von Gasen durch Metalle. Zeitschrift für physikalische Chemie. 1907, vol. 60, no. 2, pp. 129–201. (In Germ.). https://doi.org/10.1515/zpch-1907-6009

11. Sieverts A. Die Löslichkeit von Wasserstoff in Kupfer, Eisen und Nickel. Zeitschrift für physikalische Chemie. 1911, vol. 77, no. 5, pp. 591–613. (In Germ.). https://doi.org/10.1515/zpch-1911-7737

12. Sieverts A., Zapf G., Moritz H. Die Löslichkeit von Wasserstoff, Deuterium und Stickstoff in Eisen. Zeitschrift für physikalische Chemie. 1938, vol. A183, no. 1, pp. 19-37. (In Germ.). https://doi.org/10.1515/zpch-1939-18304

13. Liang H., Bever M.B., Floe C.F. The solubility of hydrogen in molten iron-silicon alloys. Transactions of AIME. 1946, vol. 167, no. 2, pp. 395–403.

14. Karnaukhov M.M., Morozov A.N. Solubility of hydrogen in liquid iron and its alloys with titanium, niobium and tantalum. Izvestiya AN SSSR. Otdeleniye tekhnicheskikh nauk (OTN). 1948, no. 12, pp. 1845–1855. (In Russ.).

15. Busch T., Dodd R. A. The solubility of hydrogen and nitrogen in liquid alloys of iron, nickel and cobalt. Transactions of the Metallurgical Society of AIME. 1960, vol. 218, no. 3, pp. 488–491.

16. De Kazinczy F., Lindberg O. Solubility of hydrogen in Fe-Ni and Fe-Cr alloys at 1400 and 1600 °C. Jernkontorets Annaler. 1960, vol. 144, no. 4, pp. 288–296.

17. Schenck H., Wünsch H. Über die Gleichgewichtslöslichkeit des Wasserstoffs im flüssigen reinen Nickel und Eisen und die Beeinflussung im Eisen durch Sauerstoff. Archiv für das Eisenhüttenwesen. 1961, vol. 32, no. 11, pp. 779–790. (In Germ.).

18. Maekawa S., Nakagawa Y. The solubility of hydrogen in liquid iron and iron alloys. Report 1. Research Reports of the Japan Steel Works, Ltd. March 1, 1961, 20 p.

19. Weinstein M., Elliott J.F. Solubility of hydrogen in liquid iron alloys. Transactions of the Metallurgical Society of AIME. 1963, vol. 227, no. 2, pp. 382–393.

20. Bagshaw T., Engledow D., Mitchell A. Solubility of hydrogen in some liquid iron-based alloys. Journal of the Iron and Steel Institute. 1965, vol. 203, no. 2, pp. 160–165.

21. Schenck H., Lange K.W. Untersuchungen über die Wasserstofflöslichkeit in Fe, Ni, Co, Cu und deren binären Nickellegierungen. Archiv für das Eisenhüttenwesen. 1966, vol. 37, no. 9, pp. 738–748. (In Germ.).

22. Someno M., Nagasaki K., Kadoi K. Solubility of hydrogen in liquid iron and some binary iron alloys. Nippon kinzoku gakkai-shi. 1967, vol. 31, no. 6, pp. 729–734. (In Jap.).

23. Gunji K., Matoba S., Ono K. Measurement of hydrogen solubility in liquid iron alloys. Nippon kinzoku gakkai-shi. 1967, vol. 31, no. 1, pp. 51–64. (In Jap.).

24. Kato E., Fukuda Sh., Sugiyama T., Furukawa T. Solubility of hydrogen in liquid iron alloys. Tetsu-to-Hagane.1970, vol. 56, no. 5, pp. 521–535. (In Jap.).

25. Blossey R.G., Pehlke R.D. Solubility of hydrogen in liquid

26. Fe-Co-Ni alloys. Metallurgical Transactions. 1971, vol. 2, no. 11, pp. 3157–3161.

27. Nguen Ngia, Yavoiskii V.I., Kosterev L.B., Afanas’ev M.I. Solubility of hydrogen in binary iron-based melts. Izvestiya AN SSSR. Metally. 1972, no. 4, pp. 18–23. (In Russ.).

28. Boorstein W.M., Pehlke R.D. Measurement of hydrogen solubility in liquid iron alloys employing a constant volume technique. Metallurgical Transactions. 1974, vol. 5, no. 2, pp. 399–405. https://doi.org/10.1007/BF02644107

29. Bester H., Lange K.W. Wasserstofflöslichkeit in Eisen und flüssigen Eisen-, Mangan-, Chrom- und Siliziumlegierungen. Stahl und Eisen. 1977, vol. 97, no. 21, pp. 1037–1039. (In Germ.).

30. Mitra M., Lange K.W. Experimental studies on hydrogen solubility in liquid ternary iron-nickel-chromium alloys. Steel Research. 1990, vol. 61, no. 8, pp. 353-358. https://doi.org/10.1002/srin.199000361

31. Elliott J.F., Gleiser M., Ramakrishna V. Thermochemistry for Steelmaking. Vol. 2. Reading MA-Palo Alto-London: Addison-Wesley Publ. Co., 1963. (Russ ed.: Elliot J.F., Gleiser M., Ramakrishna V. Termokhimiya staleplavil’nykh protsessov. Moscow: Metallurgiya, 1969, 252 p.)

32. Sigworth G.K., Elliott J.F. The thermodynamics of liquid iron alloys. Metal Science. 1974, vol. 8, no. 1, pp. 298–310.

33. Grigoryan V.A., Belyanchikov L.N., Stomakhin A.Ya. Theoretical Fundamentals of Electric Steelmaking Processes. Moscow: Metallurgiya, 1987, 272 p. (In Russ.).

34. Sieverts A., Krumbhaar W. Über die Löslichkeit von Gasen in Me­tallen und Legierungen. Berichte der deutschen chemischen Gesellschaft. 1910, vol. 43, no. 1, pp. 893–900. (In Germ.). https://doi.org/10.1002/cber.191004301152

35. Weinstein M., Elliott J.F. The solubility of hydrogen in liquid pure metals: cobalt, chromium, copper and nickel. Transactions of the Metallurgical Society of AIME. 1963, vol. 227, no. 1, pp. 285–291.

36. Bagshaw T., Mitchell A. Solubility of hydrogen in some alloys of nickel. Journal of the Iron and Steel Institute. 1966, vol. 204, no. 2, pp. 87–90.

37. Lange K.W., Schenck H. Wasserstofflöslichkeit in Ni-Mo- und Ni-W-Legierungen. Zeitschrift für Metallkunde. 1969, vol. 60, no. 1, pp. 62–68. (In Germ.).

38. Linchevskii B.V. Thermodynamics and Kinetics of Interaction of Ga­ses with Liquid Metals. Moscow: Metallurgiya. 1986, 224 p. (In Russ.).

39. Emi T., Pehlke R.D. Theoretical calculation of the solubility of hyd­rogen in liquid metals. Metallurgical Transactions.1970, vol. 1, no. 10, pp. 2733-2747. https://doi.org/10.1007/BF03037808

40. Lupis C.H.P., Elliott J.F. The relation between interaction coefficients ε and e. Transactions of the Metallurgical Society of AIME. 1965, vol. 233, no. 1, pp. 257–258.

41. Bolʼshov L.A., Korneichuk S.K. Thermodynamics of liquid nitrogen solutions in chromium. Izvestiya. Ferrous Metallurgy. 2019, vol. 62, no. 5, pp. 387–393. (In Russ.). https://doi.org/10.17073/0368-0797-2019-5-387-393

42. Gunji K., Ono K., Aoki Y. The effect of various elements on the solu­bility of hydrogen in liquid iron. Nippon kinzoku gakkishi. 1964, vol. 28, no. 1, pp. 64–68. (In Jap.).

43. Bolʼshov L.A. Thermodynamics of solutions of hydrogen in liquid alloys of iron with transition metals. Zhurnal fizicheskoi khimii. 1997, vol. 71, no. 10, pp. 1902–1903. (In Russ.).

44. Bolʼshov L.A., Korneichuk S.K., Bolʼshova E.L. Thermodynamics of nitrogen solutions in liquid nickel. Izvestiya. Ferrous Metallurgy. 2021, vol. 64, no. 3, pp. 200–204. (In Russ.). https://doi.org/10.17073/0368-0797-2021-3-200-204

45. Hultgren R., Desai P.D., Hawkins D.T., Gleiser M., Kelley K.K. Selected Values of Thermodynamic Properties of Binary Alloys. Metals Park, Ohio: ASFM, 1973, 1435 p.

46. Bolʼshov L.A., Korneichuk S.K. Thermodynamic interaction coefficients in low-concentrated liquid binary alloys. Izvestiya. Ferrous Metallurgy. 2019, vol. 62, no. 9, pp. 713–718. (In Russ.). https://doi.org/10.17073/0368-0797-2019-9-713-718

47. Hardy H.K. A “subregular” solution model and its application to some binary alloy systems. Acta Metallurgica. 1953, vol. 1, no. 1, pp. 202–210.


Review

For citations:


Bolʼshov L.A., Korneichuk S.K., Bolʼshova E.L. Wagner coefficient of interaction between hydrogen and nickel in liquid steel. Izvestiya. Ferrous Metallurgy. 2022;65(7):519-525. (In Russ.) https://doi.org/10.17073/0368-0797-2022-7-519-525

Views: 442


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)