Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Thermal upgrading of nickel from limonite by means of selective reduction

https://doi.org/10.17073/0368-0797-2022-7-471-478

Abstract

X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy energy dispersion spectroscopy (SEM–EDS), and differential thermal analysis (DTA) measurements were used to investigate the mineralogical characteristics and distribution of data set in limonite soil from Indonesia. The findings point to a complicated inner core in laterite ore. Ni, Fe, Mg, Al, and Si levels in limonite are 1.4, 50.5, 1.81, 4.86 and 16.5 wt %, respectively. The iron oxide/oxyhydroxide content of limonite is 94.4 and 5.6 % silicate. DTA shows that limonite has a phase transition in the low temperature (200 – 300 °C) with the goethite transformation to hematite. This phase is good optimalization for nickel diffusion in the iron. Moreover, for this limonite, the thermal upgrading was used as a good method.

About the Authors

F. Bahfie
Research Center of Mining Technology, National Research and Innovation Agency of Indonesia; University of Indonesia
Indonesia

Fathan Bahfie, Researcher, Research Center of Mining Technology, National Research and Innovation Agency of Indonesia; Postgraduate, University of Indonesia

Jalan Ir. Sutami Km. 15, South Lampung, Lampung 35361, Indonesia

Pondok Cina, Beji, Depok City, West Java 16424, Indonesia



A. Manaf
University of Indonesia
Indonesia

Azwar Manaf, Dr., Prof. of the Chair of Physics, Faculty of Mathematics and Science

Pondok Cina, Beji, Depok City, West Java 16424, Indonesia



W. Astuti
Research Center of Mining Technology, National Research and Innovation Agency of Indonesia
Indonesia

Widi Astuti, Dr. Eng, Researcher

Jalan Ir. Sutami Km. 15, South Lampung, Lampung 35361, Indonesia



F. Nurjaman
Research Center of Mining Technology, National Research and Innovation Agency of Indonesia
Indonesia

Fajar Nurjaman, Dr., Researcher

Jalan Ir. Sutami Km. 15, South Lampung, Lampung 35361, Indonesia



E. Prasetyo
Research Center of Mining Technology, National Research and Innovation Agency of Indonesia; Norwegian University of Science and Technology
Indonesia

Erik Prasetyo, PhD, Researcher, Research Center of Mining Technology, National Research and Innovation Agency of Indonesia, Postdoctorate of the Chair of Chemical Engineering, Norwegian University of Science and Technology

Jalan Ir. Sutami Km. 15, South Lampung, Lampung 35361, Indonesia

4 Kjemi Gløshaugen, Trondheim 7491, Norway



S. Sumardi
Research Center of Mining Technology, National Research and Innovation Agency of Indonesia
Russian Federation

Slamet Sumardi, Researcher

Jalan Ir. Sutami Km. 15, South Lampung, Lampung 35361, Indonesia



References

1. Butt C.R.M., Cluzel D. Nickel laterite ore deposits: Weathered serpentinites. Elements. 2013, vol. 9, no. 2, pp. 123–128. https://doi.org/10.2113/gselements.9.2.123

2. Pickles C. A. Microwave heating behaviour of nickeliferous limonitic laterite ores. Mineral Engineering. 2004, vol. 17, no. 6, pp. 775–784. https://doi.org/10.1016/j.mineng.2004.01.007

3. Kyle J. Nickel laterite processing technologies – where to next? In: ALTA 2010 Nickel/Cobalt/Copper Conference, 24–27 May, Perth, Western Australia, pp. 1–36.

4. Rao M., Li G., Jiang T., Luo J., Zhang Y., Fan X. Carbothermic reduction of nickeliferous laterite ores for nickel pig iron production in China: A review. JOM. 2013, vol. 65, no. 11, pp. 1573–1583. https://doi.org/10.1007/s11837-013-0760-7

5. Rodrigues F., Pickles C., Peacey J., Elliott R., Forster J. Factors affecting the upgrading of a nickeliferous limonitic laterite ore by reduction roasting, thermal growth and magnetic separation. Mine­rals. 2017, vol. 7, no. 12, article 176. https://doi.org/10.3390/min7090176

6. Soler J.M., Cama J., Gali S., Melendez W., Ramirez A., Estanga J. Composition and dissolution kinetics of garnierite from the Loma de Hierro Ni-laterite deposit, Venezuela. Chemical Geology. 2008, vol. 249, no. 1–2, pp. 191–202. https://doi.org/10.1016/j.chemgeo.2007.12.012

7. Xiong Y. Research on process mineralogy for the reverberatory furnace slag in Yunnan. Multipurpose Utilization of Mineral Resour­ces. 2015, vol. 1, no. 2, pp. 51–57. https://doi.org/10.3969/j.issn.1000-6532.2015.01.012

8. Yongue-Fouateu R., Ghogomu R.T., Penaye J., Ekodeck G.E., Stendal H., Colin F. Nickel and cobalt distribution in the laterites of the Lomie region, south-east Cameroon. Journal of African Earth Sciences. 2006, vol. 45, no. 1, pp. 33–47. https://doi.org/10.1016/j.jafrearsci.2006.01.003

9. Li G., Jia H., Luo J., Peng Z., Zhang Y., Jiang T. Ferronickel preparation from nickeliferous laterite by rotary kiln-electric furnace process. In: Characterization of Minerals, Metals, and Materials 2016, pp. 143–150. https://doi.org/10.1007/978-3-319-48210-1_17

10. Zhou S., Wei Y., Li B., Wang H., Ma B., Wang C., Luo X. Minera­logical characterization and design of a treatment process for Yunnan nickel laterite ore, China. International Journal of Minerals Processing. 2017, vol. 159, pp. 51–59. https://doi.org/10.1016/j.minpro.2017.01.002

11. Zhou Y., Zhang C., Xie T., Hong T., Zhu H. A microwave thermostatic reactor for processing liquid materials based on a heat-exchanger. Materials. 2017, vol. 10, no. 10, article 1160. https://doi.org/10.3390/ma10101160

12. Udy M.J., Udy M.C. Selective smelting of lateritic ores. JOM. 1959, vol. 11, pp. 311–314. https://doi.org/10.1007/BF03397826

13. Yang S., Du W., Shi P., Shangguan J., Liu S., Zhou C., Chen P., Zhan Q., Fan H. Mechanistic and kinetic analysis of Na2SO4-modified laterite decomposition by thermogravimetry coupled with mass spectrometry. PLoS ONE. 2016, vol. 11, no. 6, article e0157369. https://doi.org/10.1371/journal.pone.0157369

14. Zhou S., Li B., Wei Y., Wang H., Wang C., Ma B. Effect of Additives on phase transformation of nickel laterite ore during low-temperature reduction roasting process using carbon monoxide. In: Drying, Roasting, and Calcining of Minerals. Thomas P.B., etc. eds. 2015, pp. 177–184.

15. Bahfie F., Manaf A., Astuti W., Nurjaman F. Tinjauan teknologi proses ekstraksi bijih nikel laterit. Jurnal Teknologi Mineral dan Batubara. 2020, vol. 17, no. 3, pp. 135–152. (In Indonesian).

16. Nurjaman F., Saekhan K., Bahfie F., Astuti W., Suharno B. Effect of binary basicity (CaO/SiO2 ) on selective reduction of lateritic nickel ore. Periodico di Mineralogia. 2021, vol. 90, no. 2, pp. 239–245.

17. Nurjaman F., Sari Y., Manurung P., Handoko A.S., Bahfie F., Astuti W., Suharno B. Study of binary, ternary, and quaternary basi­city in reduction of saprolitic nickel ore. Transactions of the Indian Institute of Metals. 2021, vol. 74, no. 12, pp. 3249–3263. https://doi.org/10.1007/s12666-021-02391-7

18. Nurjaman F., Handoko A.S., Bahfie F., Astuti W., Suharno B. Effect of modified basicity in selective reduction process of limonitic nickel ore. Journal of Materials Research and Technology. 2021, vol. 15, pp. 6476-6490. https://doi.org/10.1016/j.jmrt.2021.11.052

19. Bahfie F., Manaf A., Astuti W., Nurjaman F. Studies on reduction characteristics of limonite and effect of sodium sulphate on the selective reduction to nickel. Journal of The Institution of Engineers (India): Series D. 2020, vol. 102, no. 1, pp. 149–157. https://doi.org/10.1007/s40033-020-00240-3

20. Bahfie F., Manaf A., Astuti W., Nurjaman F., Prasetyo E., Sumardi S. Study effect of Na2SO4 dosage and graphite on the selective reduction of saprolite from nickel grade, recovery, and iron-nickel grain size. AIP Conference Proceedings. 2021, vol. 2382, no. 1, article 050007. https://doi.org/10.1063/5.0060016

21. Bahfie F., Manaf A., Astuti W., Nurjaman F., Prasetyo E. Studies of carbon percentage variation and mixing Saprolite-Limonite in selective reduction. Materials Today: Proceedings. 2022. https://doi.org/10.1016/j.matpr.2022.04.679

22. Bahfie F., Shofi A., Herlina U., Handoko A.S., Septiana N.A., Sya­friadi S., Suharto S., Sudibyo S., Suhartono S., Nurjaman F. The effect of sulfur, temperature, the duration of the process and reductant on the selective reduction of limonite ore. Gospodarka Surowcami Mineralnymi – Mineral Resources Management. 2022, vol. 38, no. 1, pp. 123–136. https://doi.org/10.24425/gsm.2022.140606


Review

For citations:


Bahfie F., Manaf A., Astuti W., Nurjaman F., Prasetyo E., Sumardi S. Thermal upgrading of nickel from limonite by means of selective reduction. Izvestiya. Ferrous Metallurgy. 2022;65(7):471-478. https://doi.org/10.17073/0368-0797-2022-7-471-478

Views: 625


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)