Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Bauschinger effect during alternating deformation

https://doi.org/10.17073/0368-0797-2022-7-455-466

Abstract

The Bauschinger effect is a phenomenon of a decrease in material resistance to small plastic deformations after preliminary plastic deformation of the opposite direction, discovered in 1881. This effect is of great importance and is used, in particular, in studying the fatigue strength of materials under alternating loads. The Bauschinger effect is inherent in all metals and alloys, although it is most pronounced in steels. Therefore, it is one of the factors affecting the quality of finished metal products subjected to alternating loading during manufacture. This review analyzes the literature data on the problem of the Bauschinger effect in the case of alternating deformation of metals. Various mechanisms explaining the Bauschinger effect are briefly considered. The factors that qualitatively and quantitatively affect the Bauschinger effect are described in detail, namely the degree of preliminary deformation, composition, structure and properties of the material, deformation conditions, the phenomenon of dynamic deformation aging, and temperature. The problem of the Bauschinger effect in the case of alternating deformation of steel products is considered, in particular, in the production of oil and gas pipes of large diameter. Various methods and approaches to the evaluation and quantitative measurement of the Bauschinger effect are described; the dependence of the Bauschinger parameter on the value for residual deformation is shown. It is concluded that the Bauschinger effect plays both a positive and a negative role in the production of metal products, in particular oil and gas pipes. On the one hand, the Bauschinger effect has a negative effect, reducing the level of mechanical properties of the final product below the required one. On the other hand, it creates a certain margin of plasticity of the deformable material in the process of forming and laying pipes.

About the Authors

R. R. Adigamov
JSC “Severstal Management”
Russian Federation

Ruslan R. Adigamov, Cand. Sci. (Eng.), Head of the Department

2 Klary Tsetkin Str., Moscow 127299, Russian Federation



V. A. Andreev
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences; Industrial Center MATEK-SMA, Ltd.
Russian Federation

Vladimir A. Andreev, Cand. Sci. (Eng.), Senior Researcher, Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences; General Director, Industrial Center MATEK-SMA, Ltd.

49 Leninskii Ave., Moscow 119334, Russian Federation

2-a, bld. 1-137 Kar’er Str., Moscow 117449, Russian Federation



S. O. Rogachev
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences; National University of Science and Technology “MISIS”
Russian Federation

Stanislav O. Rogachev, Research Associate, Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences; Cand. Sci. (Eng.), Assist. Prof. of the Chair “Metallography and Physics of Strength”, National University of Science and Technology “MISIS”

49 Leninskii Ave., Moscow 119334, Russian Federation

4 Leninskii Ave., Moscow 119049, Russian Federation



E. S. Fedotov
JSC “Severstal Management”
Russian Federation

Evgenii S. Fedotov, Senior Manager

2 Klary Tsetkin Str., Moscow 127299, Russian Federation



G. E. Khadeev
JSC “Severstal Management”
Russian Federation

Grigorii E. Khadeev, Cand. Sci. (Eng.), Leading Expert

2 Klary Tsetkin Str., Moscow 127299, Russian Federation



V. S. Yusupov
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences; MIREA – Russian Technological University
Russian Federation

Vladimir S. Yusupov, Dr. Sci. (Eng.), Chief Researcher, Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences; Prof., MIREA – Russian Technological University

49 Leninskii Ave., Moscow 119334, Russian Federation

78 Vernadskogo Ave., Moscow 119454, Russian Federation



References

1. Masing G. On Heyn’s theory of hardening of metals through hidden elastic stresses. In: Scientific publications from the Siemens group. Harries C.D. ed. Berlin, Heidelberg: Springer, 1924, pp. 231–239. (In Germ.). https://doi.org/10.1007/978-3-642-99663-4_17

2. Bauschinger J. Uber die Veranderung der Elastizitatsgrenze und der Festigkeit des Eisens und Stahls durch Strecken und Quetschen, durch Erwarmen und Abkuhlen und durch oftmals wiederholte Beanspruchung. Mittheilungen aus dem Mechanisch-Techni­schen Laboboratorium der Koniglichen Technischen Hochschule in Munchen. 1886, vol. 13, pp. 1–115. (In Germ.).

3. Bauschinger J. Ueber die Veranderung der Elasticitatagrenze und dea Elasticitatamoduls verschiadener Metalle. Zivilingenieur. 1881, vol. 27, pp. 289–348. (In Germ.).

4. Skelton R.P. Bauschinger yield in the range 400 – 1025 °C during cyclic deformation of high temperature alloys. Materials at High Temperatures. 2013, vol. 30, pp. 241–260. https://doi.org/10.3184/096034013X13807096276564

5. Nigmatullin V.I. Experimental study of the effect of preliminary plastic deformation on structural steels behavior under reverse loading. Trudy TsNII im. akad. A.N. Krylova. 2011, no. 60, pp. 119–132. (In Russ.).

6. Kharitonov V.A., Maloletkova E.O. Influence of the Bauschinger effect on strength characteristics of high-strength pipes. Obrabotka sploshnykh i sloistykh materialov. 2010, no. 36, pp. 28–33. (In Russ.).

7. Linchevskii P.A., Novozhilov S.V., Kudryakov M.B. Improving the technology of metal processing by cutting and plastic deformation with the use of the Bauschinger effect. Trudy Odesskogo politekhnicheskogo universiteta. 2008, no. 2, pp. 73–76. (In Russ.).

8. Xiaoyu H., Chao W., Margolin H., Nourbakhsh S. The Bauschinger effect and the stresses in a strained single crystal. Scripta Metallurgica et Materialia. 1992, vol. 27, no. 7, pp. 865–870. https://doi.org/10.1016/0956-716X(92)90407-6

9. Wood W.A., Dewsnap N. Internal stresses in metals. Nature. 1948, vol. 161, pp. 682–683. https://doi.org/10.1038/161682b0

10. Abel A., Muir H. The Bauschinger effect and discontinuous yielding. Philosophical Magazine. 1972, vol. 26, pp. 489–504.

11. Rovinskii B.M., Sinaiskii V.L. On the nature of the Bauschinger effect. Izvestiya AN SSSR. Metallurgiya i toplivo. 1959, no. 6, pp. 137–141. (In Russ.)

12. Brown L.M. Orowan’s explanation of the Bauschinger effect. Scripta Metallurgica. 1977, vol. 11, no. 2, pp. 127–131. https://doi.org/10.1016/0036-9748(77)90291-5

13. Orowan E. Causes and effects of internal stresses. In: Internal Stresses and Fatigue in Metals. Proceedings of General Motors Symposium. Rassweiler G.M., Grube W.L. eds. Amsterdam: Elsevier, 1959, pp. 59–80.

14. Grachev S.V., Kazyaeva I.D., Pumpyanskii D.A. Thermal stability of the Bauschinger effect in the cold-deformed steel. Physics of Me­tals and Metallography. 2004, vol. 97, no. 2, pp. 217–219.

15. Mamun A.A., Moat R.J., Kelleher J., Bouchard P.J. Origin of the Bauschinger effect in a polycrystalline material. Materials Science and Engineering: A. 2017, vol. 707, pp. 576–584. https://doi.org/10.1016/j.msea.2017.09.091

16. Sleeswyk A.W., James M.R., Plantinga D.H., Maathuis W.S.T. Reversible strain in cyclic plastic deformation. Acta Metallurgica. 1978, vol. 26, no. 8, pp. 1265–1271. https://doi.org/10.1016/0001-6160(78)90011-1

17. Mughrabi H. Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metallurgica. 1983, vol. 31, no. 9, pp. 1367–1379. https://doi.org/10.1016/0001-6160(83)90007-X

18. Grachev S.V, Grigor’eva V.N. Thermal stability of the Bauschinger effect in hardened and tempered steel. Fiziko-khimicheskaya mekhanika materialov. 1968, vol. 4, no. 5, pp. 544–547. (In Russ.).

19. Pykhtunova S.V. On the issue of the Bauschinger effect. Kachestvo v obrabotke materialov. 2015, no. 1, pp. 75–77. (In Russ.).

20. Peirs J., Verleysen P., Degrieck J. Study of the dynamic Bauschinger effect in Ti6Al4V by torsion experiments. EPJ Web of Conferences. 2012, vol. 26, article 01023. https://doi.org/10.1051/epjconf/20122601023

21. Richards M.D., Van Tyne C.J., Matlock D.K. The influence of dynamic strain aging on resistance to strain reversal as assessed through the Bauschinger effect. Materials Science and Engineering: A. 2011, vol. 528, no. 27, pp. 7926–7932. https://doi.org/10.1016/j.msea.2011.07.015

22. Bobonets I.I., Gindin I.A., Neklyudov I.M. Influence of programmed hardening on the Bauschinger effect of copper and aluminum. Izves­tiya AN SSSR. Metally. 1967, no. 6, pp. 156–159. (In Russ.).

23. Vasil’ev D.M. On the nature of the Bauschinger effect. In: Some Problems of Solid Strength. Moscow: Izdatel’stvo AN SSSR, 1959, pp. 37–48. (In Russ.).

24. Saks G., Shoji H. Zug-Druckversuche an Messingkristallen (Bauschingereffekt). Zeitschrift für Physik. 1927, vol. 45, pp. 776–796. (In Germ.). https://doi.org/10.1007/BF01329555

25. Zubchaninov V.G., Alekseev A.A., Gul’tyaev V.I. Investigation of the Bauschinger effect and the yield boundary during elastoplastic deformation of metals. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Mekhanika. 2013, no. 1, pp. 94–105. (In Russ.).

26. Moskvitin V.V. Plasticity under Variable Loading. Moscow: MSU Publ., 1966, 263 p. (In Russ.).

27. Zakirov D.M., Rubin G.Sh., Mezin I.Yu., Sabadash A.V., Vasil’ev S.P., Chukin V.V., Skvortsova S.S. Qualimetric Assessment of Automotive Fasteners Production: Monograph. Magnitogorsk: MSTU, 2007, 158 p. (In Russ.).

28. Bogatov A.A., Puzyrev S.S. Features of shaping and hardening of metal during pressure treatment with sign-variable deformation. Proizvodstvo prokata. 2013, no. 3, pp. 2–8. (In Russ.).

29. Woolley R.L. The Bauschinger effect in some face-centered and body-centered cubic metals. Philosophical Magazine. 1953, vol. 44, pp. 597–618.

30. Ratner S.I., Danilov Yu.S. Changes in proportionality limit and yield point under repeated loading. Zavodskaya laboratoriya. 1950, no. 4, pp. 46–47. (In Russ.).

31. Trelewicz J.R., Schuh C.A. The Hall–Petch breakdown in nanocrystalline metals: A crossover to glass-like deformation. Acta Materialia. 2007, vol. 55, no. 17, pp. 5948–5958. https://doi.org/10.1016/j.actamat.2007.07.020

32. Chernyak N.I., Gavrilov D.A. Resistance to Deformation of Metals under Repeated Static Loading. Kiev: Naukova dumka, 1971, 136 p. (In Russ.).

33. Manin V.P., Pykhtunova S.V. Influence of accumulated deformation on hardness and resistance to deformation when sharpening dowels by cold cross-wedge rolling. In: Processing of Solid and Laminated Materials. Magnitogorsk, 2005, pp. 71–73. (In Russ.).

34. Smirnov M.A., Akhmed’yanov A.M., Varnak O.V., Mal’tseva A.N. Tendency of low-carbon pipe steel to the Bauschinger effect. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Metallurgiya. 2015, vol. 15, no. 2, pp. 26–32. (In Russ.).

35. Khadeev G.E. Effect of multistage deformation during the pipe manu­facturing on mechanical properties of steels strength grade X70–X80. In: Proceedings of the 8th Int. Conf. on Modeling and Simulation of Metallurgical Processes in Steelmaking (STEELSIM 2019). August 13–15, 2019, Toronto, Ont., Canada. 2019, pp. 347–357.

36. Kim H.L., Park S.H. Loading direction dependence of yield‑point phenomenon and Bauschinger effect in API X70 steel sheet. Metals and Materials International. 2020, vol. 26, pp. 14–24. https://doi.org/10.1007/s12540-019-00325-z

37. Skripnyak V.A. Modeling of the Bauschinger effect based on dislocation kinetics of plastic deformation. In: All-Union Seminar on Strain Hardening of Steels and Alloys. Barnaul: ASU Publ., 1981, p. 54. (In Russ.).

38. Rychkov B.A. Complex deformation of steel 45. In: On the Problem of Mechanics of a Real Solid. Frunze: Izdatel’stvo Ilim, 1984, pp. 66–78. (In Russ.).

39. Feigin M. Inelastic behavior under the combined action of tension and torsion. In: Mechanics: Translated Papers. 1956, no. 3, pp. 125–139. (In Russ.).

40. Komartsov N.M., Luzhanskaya T.A., Rychkov B.A. The Bauschinger effect under complex loading. Vestnik Tambovskogo universiteta. Seriya: Estestvennye i tekhnicheskie nauki. 2010, vol. 15, no. 3, pp. 853–855. (In Russ.).

41. Smirnov M.A., Pyshmintsev I.Yu., Varnak O.V., Mal’tseva A.N., Goikhenberg Yu.N. Strain aging and the Bauschinger effect in low-carbon pipe steel. Steel in Translation. 2016, vol. 46, no. 1,

42. pp. 58–64. https://doi.org/10.3103/S0967091216010149

43. Kostryzhev A.G., Strangwood M. Bauschinger Effect in Microalloyed Steels: Part I. Dependence on Dislocation-Particle Interaction. Metallurgical and Materials Transactions A. 2010, vol. 41, pp. 1399–1408. https://doi.org/10.1007/s11661-010-0196-4

44. Samusev S.V., Zhigulev G.P., Skripalenko M.M., Fadeev V.A. Research of technological parameters of billet stepwise forming in production of large diameter tubes at tube electric pipe welded line TESA 1420. Chernye Metally. 2017, no. 9, pp. 73–77.

45. Loevets D.A., Volegov P.S. Description of the Bauschinger effect under cyclic loading of polycrystals using a two-level mathematical model. Vestnik Tambovskogo universiteta. Seriya: Estestvennye i tekhnicheskie nauki. 2016, vol. 21, no. 3, pp. 1116–1119. (In Russ.).

46. Sergiev A.P., Proskurin A.A., Logachev V.N. Influence of the Bauschinger effect on sheet cutting. Fundamental’nye i prikladnye problemy tekhniki i tekhnologii. 2012, no. 5, pp. 82–85. (In Russ.).

47. Khvan A.D., Khvan D.V., Voropaev A.A. Single sample method for assessing the Baushinger effect. Zavodskaya Laboratroiya. Diagnostika Materialov. 2020, vol. 86, no. 7, pp. 55–58. (In Russ.). https://doi.org/10.26896/1028-6861-2020-86-7-55-58

48. Kharitonov V.A. Evaluation of the efficiency of manufacturing steel wire by the combined “rolling – drawing” method. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem. 2013, no 5, pp. 15–19. (In Russ.).

49. Shapievskaya V.A. Experimental methods for determining parameters of the Bauschinger effect. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem. 2011, no. 1, pp. 3–8. (In Russ.).

50. Sowerby R., Uko D.K., Tomita Y. A review of certain aspects of the Bauschinger effect in metals. Materials Science and Engineering. 1979, vol. 41, no. 1, pp. 43–58. https://doi.org/10.1016/0025-5416(79)90043-0

51. Moan G.D., Embury J.D. A study of the Bauschinger effect in Al–Cu alloys. Acta Metallurgica. 1979, vol. 27, no. 5, pp. 903–914. https://doi.org/10.1016/0001-6160(79)90125-1

52. Novozhilov V.V. On complex loading and prospects of phenomenological approach to microstresses analysis. Prikladnaya matematika i mekhanika. 1964, vol. 28, no. 3, pp. 394–400. (In Russ.).

53. Talypov G.B. Plasticity and Strength of Steel under Complex Loading. Leningrad: LSU, 1968, 134 p. (In Russ.).


Review

For citations:


Adigamov R.R., Andreev V.A., Rogachev S.O., Fedotov E.S., Khadeev G.E., Yusupov V.S. Bauschinger effect during alternating deformation. Izvestiya. Ferrous Metallurgy. 2022;65(7):455-466. (In Russ.) https://doi.org/10.17073/0368-0797-2022-7-455-466

Views: 1403


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)